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FOREWORD

This report was prepared by Rocketdyne, = Division of North Americen
Rockwell, Inc. in compliance with Contract NaS3-14407. The work is
edministered under the technical direction of the NASL Lewis Research

Center with Mr. Harry Cameron acting as Technical Msnager.






TMRO0115-3137
Page 1

INTRODUCTION

This report presents data on a Phase I study of auxiliary power units to
supply hydraulic and electrical power for both the orbiter and booster
vehicles of the space shuttle. The program objective is to provide analysis
and design information for gaseous oxygen/hydrogen and storable propellant
APU's. 1Input of this information into the APU tradeoff studies (Phase I)
and configuration decisions (Phase II) will ensure that APU specifications
are realistic and achievable, and will provide a basis for space shuttle

APU development programs.

In addition to meeting APU missién requirements, the design reflects
pertinent non-operational criteria, including commercial aircraft reliability
standards, minimized development cost and risk, minimized dry weight, high
performance (low specific fuel consumption), use of state-of-the-art materials
and technology wherever possible, and 1000-hr useful life capability.
Discrete preplanned steps are arranged to reach the program objectives in

an efficient manner consistent with the study time schedule. These steps

are on the establishment of system specifications (or characteristics),

the creation of applicable concepts, a design analysis of those functions

to obtain design requirements, a synthesis of the data resulting from the
design analysis, and an evaluation of the synthesized concepts. The
evaluation results in the identification of a preliminary design that best
satisfies the APU requirements and criteria. The primary evaluation criteria
are those consistent with space shuttle vehicle criteria: (1) a minimum of
new technology required, (2) inherent simplicity, (3) low weight, (4)
flexibility to accommodate mission changes, and (5) minimal and easy system

maintenance and refurbishment.
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The Phase I program consists of system definition, operational analysis, and
optimization of various system configurations with respect to weight,
reliability, and development risk. For purposes of analysis, the APU was
separated into three subsystems: The propellant feed system, the turbo-

power unit, and the power control system. A total of 18 Hz/Oz systems and

4 storable propellant systems were evaluated in Phase IB utilizing a digital
computer program for weight optimization and analog modeling to determine
dynamic operational characteristicé and control requirements. Propellant
sources considered included pumped and pressure (supercritical) fed propellant
and high/low pressure gas supply from a vehicle source. Pressure compounded
and velocity compounded two stage turbines were considered for the turbo-power
unit. Three power control methods consisting of pressure modulation, pulse
modulation, and a hybrid control (area modulation) were evaluated with various

combinations of TPU designs and propellant sources.
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SUMMARY AND CONCLUSIONS

The first phase of a design study for the Space Shuttle Auxiliary Power
System (APU) has been completed. The Phase IA evaluation emphasized
comparison of various options for the propellant system, turbo power unit,
and power control techniques as illustrated in Fig. 1. As a result of the
evaluations conducted in Phase IA, the 22 specific systems shown in Fig. 2
were evaluated in Phase IB. It was recommended that the baseline system

for Phase II should use hydrogen and oxygen conditioned gaseous propellants
with hydrogen supplied from vehicle integrated tanks. The turbo power unit
(TPU) is designed with a two-stage turbine using an inlet pressure of 150 to

600 psi.

The Phase IB specified APU power profile is shown for the booster and

orbiter in Fig. 3 and 4 and the APU power flow needed to meet the requirements
is illustrated in Fig. 5. In addition, the entire APU system, including TPU
and propellant conditioning system, was designed to provide steady full power,
if demanded, for sustained periods. The propellant conditioning system utilizes
hydrogen to perform the hydraulic cooling function for the vehicle in all HZ/OZ

systems evaluated. For storables, separate cooling is supplied by a water boiler.

During the initial Phase IB study the pressure compound turbine was compared
with and chosen over the velocity compound turbine due to its performance
advantage and known level of technology for this particular high turbine Mach
number application. Three power control systems (pulse, pressure modulation, and

hybrid), were investigated. The first two were analyzed in depth.
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A general APU schematic as synthesized is illustrated in Fig. 6. The system
is comprised of three subsystems with their associated primary functions as
noted:

1. Propellant Conditioning System - acquires and conditions the
propellant as necessary to provide controlled mixture of gaseous
propellants, at the predetermined temperature and pressure to
the TPU. In addition it performs the necessary cooling of the
hydraulic and lubricating oil.

2. Turbo Power Unit - utilizes the propellants to provide necessary
hydraulic and electrical power to the vehicle in the specified
flight profile.

3. Power Control System - provides speed control to ensure that the

TPU operates within specified limits providing the required output.

Utilizing configurations as illustrated in Fig. 6 for the H2/O2 systems and a
configuration for the storable system as shown in Fig. 7 the 22 systems shown in
Fig. 2 were evaluated. Five general system types (A, B, C, D, and E) were
defined, each typifying a different propellant supply system. The evaluation
was performed for each APU system optimized for a booster vehicle and for an
orbiter vehicle, as well as for a common system utilizing a booster APU in the
orbiter. These results are illustrated in Fig. 8. The "best' system was then
chosen from each of the five general system types and compared with each other
in Fig. 9 for the boéster vehicle and in Fig. 10 for the orbiter vehicle using

a common booster APU.
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The High Pressure Vehicle Supplied H2/O2 Gas System (D) and Pumped Hydrogen/
Supercritical Stored Oxygen System (A) are clearly lowest in weight for both
booster and orbiter. For all systems the pulse modulated power control option
is lower in weight. Detailed weight breakdowns are shown in Tables 1 and 2

for the booster and orbiter systems.

Figure 11 illustrates the advantages to be gained by considering booster/
orbiter commonality. The weight penalty per APU and the vehicle related cost
of orbiting payload assuming three APU's per orbiter vehicle proves to be small.
The various APU system weights are compared in Fig. 12 in terms of equivalent
orbiter system weight* and vehicle related cost. The baseline chosen was

common APU's with six APU's per booster and three APU's per orbiter vehicle.

Estimates for the development costs of each of the major APU systems are shown
in Fig. 13. Research, Technology, Development and Engineering (RTD&E) costs

in A dollar form added to the A dollar vehicle related costs of Fig. 12 are
compared. The Storable Propellant System (E-1) indicates the lowest RTD&E

cost while the High Pressure Supply Cas HZ/OZ Pulse Control System (D-3)

had the lowest vehicle related costs. The total costs shown in Fig. 13 show

a definite advantage for the High Pressure Vehicle Supply Gas System over all
but the Pumped Hydrogen Gas System. The latter, while somewhat more expensive,

is felt to be cost competitive.

The ground support equipment necessary is not included in the cost figures
and since more GSE is required for the storable system, the H2/O2 system would

appear even more favorable from a cost viewpoint,

*Equivalent orbiter weight = booster gelated weight + orbiter related weight.
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The various systems were rated for Reliability, Development Risk, Maintainability,
and Flexibility as shown in Fig. 14. The weighting given to each factor is
shown on the left, A high rating number is favorable. From this it is seen
that the high pressure gas system is most reliable (as summarized below),

the storable system most developed, the low- and high-pressure gas system
easiest to maintain, and the pumped hydrogen system most flexible. Overall,

the storable and high-pressure gas systems rate highest. The low maintain-
ability rating of the hydrazine system must be emphasized. "In-flight"
reliability is significantly degraded on all hydrazine components requiring
close tolerances, tight clearances, and sliding fits due to detrimental effects
of propellant residuals. Hydrazine in extended use leaves a residue which can
reduce valve response times or in the extreme prevent valve movement. Achieving
high reliability levels therefore is dependent on frequent maintenance with

its attendant costs.

In systems selection criteria, these ratings must be considered together
with weight and cost factors. Figure 14 also summarizes the cost data from

Figure 13.

The APU systems studied were also evaluated for reliability. Acceptable
reliable is obtaiped for all of the various options, The most significant
influences on relative system reliability are due to pressure system
elements (valves, regulators), propellant modulation control complexity,

and tankage. Therefore, the low-pressure system having the fewest valves is
better than the supercritical system which has more valves, and the pumped
system which requires a pump. Pulse modulation is more reliable than

pressure modulation because a single bipropellant valve replaces the dual
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modulation valves and also provides shutoff capability without separate
valving. Area modulation is least reliable because of required complexity
and development risk. If vehicle tankage can be used instead of separate
APU related tankage, reliability is enhanced because of the elimination of

fill, drain, and relief controls.

The choice between pulse and pressure modulation for the power control is a
function of propellant pressure available from the vehicle. Figure 15
illustrates the vehicle related cost and weight differences between a pulse
and pressure modulated system as vehicle propellant supplied design pressure
is varied. As the vehicle supply pressure level is reduced the pulse control
system weight advantage increases. The vehicle supply pressure must be large
enough to accommodate control and injector pressure drops as well as line

losses,

As a result of the study, a vehicle integrated, high-pressure gas supply system
was selected. The conclusions are summarized in Fig. 16. The H2/O2 would

be supplied to the APU by propellant accumulators sized to supply the attitude
control system(s). Figure 16 also indicates the region of overlap where

pulse and/or hybrid as well as pressure modulated power control systems are
applicable. The overlap region comprises a grey area where the systems

are competitive and no clear cut overall advantage for either exists,
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In the event that propellant is not made available from the vehicle and

a nonintegrated system must be selected,either the supercritical storage
system (B-1) with pulse or hybrid power control or the pumped hydrogen

system appear to be the best compromise.

The nonintegrated pumped system saves considerable weight over the super-
critical system, but a reliable hydrogen pump with the required flow

and modulation capacity is not available. It is, therefore, recommended
that applicable pump technology be developed if a nonintegrated system

is contemplated.

In comparing various systems, it is also necessary to summarize the status

of the applicable technology. = Figures 17 and 18 identify the technology
status for the H2/O2 and the storable propellant systems. Those components
and functions of the HZ/OZ APU requiring an advancement in technology are
shown in Fig. 17. An asterisk is placed next to those items which are deemed

critical to the APU development, and the extent of the technology effort

required is estimated.

If a vehjcle gas supply system is developed, the hydrogen pump assembly,

drive and propellant acquisition are not applicable. The deep throttling

requirement of the combustor assembly is not applicable to a pulsed system,

and is substantially reduced for a hybrid system. 1If a pulsed power control —
is not selected, the valve and combustor cycles life requirement as well

as the turbine blade thermal cycling are not applicable.
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It is recommended that the major technology effort be concentrated on
the reference propellant conditioning system. Developmentof this system is
mandatory for the successful development of the APU system. Furthermore, it

is useable with any power-control selection, pulse, pressure, and hybrid

controls,

From Fig. 18 it is seen that most aspects of the hydrazine system are well
developed but that some developmental effort will be required before a

system is usable.
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PRELIMINARY ANALYSIS - PHASE TA

At the outset of the program, a preliminary analysis was performed to
identify the necessary component, subsystem, and system information to pro-
vide a comparison between candidate systems. A more refined analysis was
then performed in Phase IB. Figure 1 describes the various component ~
oriented combinations evaluated in Phase JA for each of the three major
subsystems, i.e., Propellant Feed, Turbo Power Unit and Power Controls. The
Propellant Feed Subsystem includes the necessary tankaze and pressurizing or
pumping equipment as well as the propellant conditioning subsystem. The
subsystems were chosen and combined into various syster combinations to
allow comparative evaluation for selection of the "best" combination of com-
ponents and subsystems. The propellant systems chosen are representative

of the wide range of vehicle influenced propellant supplies which may be

available,

The results of this study were presented in the First Monthly Technical
Progress Narrative covering work done in September 1970. Key elements of

this report are reprinted here as Appendix A for completeness and reference.
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APU TRADE OFF STUDTES -~ PHASE IB

APU SYSTEM OPTIMIZATION

The booster and orbiter mission profiles require APU operation over a wide
range of power at altitudes varying from sea level to vacuum ambient
conditions. Consequently, turbopower unit operation can be achieved at the
maximum efficiency design point for only a part of the total mission
duration. Total APU system weight, of which the propellant is a major por-
tion, is then strongly influenced by turbine off-design performance.
Selection of the turbine design point resulting in a minimum weight system

must then be accomplished by parametric analysis.

During Phase IA, two digital computer programs were written to calculate
total system weight based upon a given turbine design and mission profile.
Program SSAPU utilized a pressure modulation power control and SSAPU?2 a
pulse modulation power control. Inputs to the programs consist of fixed
weights, such as the turbine, gearbox, hydraulic pumps, alternator,
combustor, valves, etc, turbine design/off—design characteristics, and
mission power, altitude, and duration requirements. Total propellant
required and its associated tankage weight for various types of sources
(supercritical, low pressure, vehicle integrated or self-contained) is
combined with fixed weight, heat exchanger, hydrogen pumps, and super-
critical heater weights, with 10%Z of fixed weight for support structure,

to determine APU total weight.

Turbine performance degradation occurs for pressure ratios less than

design, which can result from throttling and back pressure increases for
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pressure modulation control, and back pressure increases for pulse control.
In the pressure modulated system a degradation in injector combustion
efficiency due to throttling occurs. In the pulse system degradation occurs
due to the time lag required to build up to peak (design) turbine inlet
pressure after opening the bipropellant valves. These degradations are
accounted for in the programs, Additional assumptions include allowance
for 5% propellant reserve at the end of the mission, 95% expulsion
efficiency, and 5% volume ullage at the end of propellant fill. Tankage
material is 2219-T87 aluminum with a safety factor of 2.0 on the ultimate
for pressurized designs or minimum wall of 0.020 inch for low pressure (L0
psia) tankage. An allowance of 20% of shell weight was made for flanges

and welds.

Phase TA system weight analysis was performed for an idealized mission
profile and several turbine designs ranging from 2 stage velocity and
pressure compounded supersonic machines to a Ly stage pressure compounded

subsonic machine.

Results of the Phase IA analysis (see Preliminary Analysis-Phase IA-
Appendix) were reviewed by NASA and the systems to be carried into the

Phase IB study were selected.

For Phase IB a new profile was provided for the booster, with an additional
analysis requirement to determine optimum orbiter APU system weight based
on an orbiter mission profile. The effect on system weight of using the
vooster APU in the orbiter vehicle was also to be explored. In addition,
analysis to determine the sensitivity of system weight to variations in

mission duration and power level was requested.
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The power and altitude profiles were approximated by discrete slices for
computer input with 18 intervals for the booster (Fig. 19) and 15

intervals for the orbiter (Fig. 20). A total of 18 different H2/O2 system
types were evaluated assuming vehicle integrated tankage for a high and

low pressure gas source, supercritical storage, and pump fed hydrogen and
four storable systems were evaluated. Three types of power control were
considered: pressure modulation, pulse modulation, which were investigated
in detail, and hybrid on which a preliminary analysis was conducted. The
hybrid control utilizes two combustors each feeding a separate nozzle block
to provide close to design operation at both mode and peak power. The low
power combustor is controlled by pressure modulation and the high powered
combustor utilizes either pulsing or pressure modulating control. Both
velocity and pressure compounded two stage turbines were considered in
various combinations with propellant sources and power controls, as shown

in Fig. 2.

Computer results are presented in Figures 21 and 22 for the booster and
orbiter APUs showing the effect of turbine design pressure ratio on total
system weight for fixed maximum inlet pressure as indicated in Fig. 2.
Results showing optimum system weights and booster and orbiter'APU weight
is summarized in Fig. 8. The supercritical and low pressure gas systems
are not competitive on a weight basis with either the pump fed or high
pressure gas systems. The lightest weight system utilizes 600 psia gaseous
propellant with a pulse controlled pressure compounded turbine (D3). The
optimum booster APU weighs 586 pounds and the optimum orbiter 318 pounds.
The weight penalty for using the optimum booster APU in the orbiter is only
6 pounds (2%). The use of a pulse power control compared to a pressure

modulated control saves 127 pounds on the booster AFU (18%) and 2L pounds on

¥ 3
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the orbiter APU (7%4). This is due primarily to the effect of ambient pressure
and power level on SPC, which is presented in Fig. 23 . The pulse controlled
system (D3) SPC shows modest sensitivity (10¢ increase) to reduction in

power and increased back pressure operation while the pressure modulated
system (D3A) is very sensitive (30% increase). Changing the propellant
source to a pumped hydrogen - supercritical oxygen system incurs a penalty
of 22 pounds for the booster and 20 pounds for the orbiter (A3). A hybrid
power control with a 600 psia gas source weighs 637 pounds for the booster
and 333 pounds for the orbiter (D8), an increase of about 9% and 5%
respectively, compared with a pulse power control. A breakdown of each
system with respect to individual component weight was presented in Tables 1
and 2 for the booster and orbiter APU, respectively. The mission SPC

based upon gearbox output and burned propellant is indicated for each

system. System D3 has the lowest SPC, 2.06 1b/HP-HR for the booster and

2.00 1b/HP-HR for the orbiter.

Differences in total system weight and SPC as affected by power control and
system type are presented in bar chart form in Figures 24 /25 and 10 for
the optimum booster, orbiter, and booster APU in the orbiter, respectively.
The sensitivity of system weight and SPC with maximum turbine inlet pressure
was determined for a gaseous propellant source pressure ranging from 230
psia (PT = 150) to 860 psia (PT = 600) for pressure, pulse, and hybrid
control. Results are presented in Figures 26, 27 , and 28. A reduction
in source pressure from 860 psia to 230 psia increases the booster APU
pressure controlled system weight penalty from 127 pounds to 235 pounds.

The heaviest pulse system (D5, Pp = 150 psia) is LO pounds lighter than the

lightest pressure modulated system (D3A, Pp = 600 psia).
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Effect of Energy Requirement

A special study was initiated during Phase IB to determine the sensitivity
of total H2/02 APU system weight to variations in mission energy require-
ments. The study was necessitated to provide input data for total vehicle
system weight studies, recognizing the present uncertainty in APU power
and duration estimates. An APU system utilizing high pressure (860 psia)
vehicle supplied gaseous propellants at 200R was selected for evaluation.
Turbine performance was calculated at several peak power levels for a two
stage pressure compounded machine assuming a 600 psi inlet pressure at a
design pressure ratio of 50 with a pulse modulated power control system.
The effect of gearbox power level on turbine, combustor, gearbox, alternator,
and hydraulic pump(s) weight was estimated from Rocketdyne and vendor
technology data to provide fixed weight input to the APU system weight
analysis computer program (SSAPU2). The mission booster profile was
simplified by assuming operation at only two power levels (peak~mode) with
95% of mission duration at mode and 5% at peek. The altitude profile was
assumed to be 10% operation at sea level, 80% at 10 psia, and 10% at
vacuum. Four peak-mode power levels were analyszed over a range of mission

energy requirement from 50 to 250 HP-HR.

Results of the study shown in Fig. 29 indicate that system weight increases
at a rate of about 270 pounds per 100 HP-HR, approximately independent of
peak-mode power level. The optimum booster APU total weight for system D3
for the Phase IB profile (137 HP-HR) falls on the 250-40 HP curve, so that
this curve should be fairly representative of the effect of mission duration

changes on the high pressure gas booster APU system weight (D3).
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Effect of Source Pressure

The effect of hydrogen source pressure on total system weight for system A

( pumped H,, supercritical 02) and B (supercritical H2/O2) is shown in

Fig. 30 . The pressure modulated supercritical system (B) weight is
essentially independent of hydrogen source pressure for levels below 600
psia. The improved SPC and corresponding reduction in propellant weight
with increasing pressure is off-set by increased tankage weight. The pulse
controlled supercritical system weight increases almost linearly with

source pressure at a rate of about 0.2 1b/psi, with the increased tank
weight dominating a slight SPC improvement with pressure. In the pump-fed
system, low pressure tankage is used so that total system weight is

reduced with increasing pressure. The pressure modulated system is more
sensitive than the pulse controlled system because of the relatively large
off-design performance degradation of the former at low reduced turbine inlet
pressure. Present limitation on pump discharge pressure for low specific
speed hydrogen pump (based on recent tests by Pesco, Div. of Borg Warner)

is indicated on the figure. A 100-pound weight saving results with a
pumped versus supercritical system based upon present technology (PDIS =
260 psia). As pump discharge pressure increases,the weight savings
increases significantly, approaching 200 pounds for a 600 psia source
pressure, representing close to 5 million dollars in vehicle related and RTD
& E costs. Pump development to achieve higher discharge pressures is
thought feasible by Pesco for only a fraction of the cost savings, indicat-

ing strong incentive for selection of a pumped system over a supercritical

system.
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Effect of Combustor Inlet Temperature

The Phase 1B SS/APU system weight optimization analysis was based, in
part, on an assumed combustor inlet temperature of 600 R, combustion
temperature of 2015 R, mixture ratio of 0.835, and C-star efficiency of
98%4. Selection of this operating condition was predicated on turbine
stress considerations and analysis to evaluate the effect of combustor
inlet temperature on propellant related system weight (propellant plus
tankage plus regenerator). To determine the effect of other values of

inlet temperature on system weight, a more detailed analysis was made.

System D3, utilizing high pressure (860 psia source) gaseous propellants

at a supply temperature of 200 R, was selected to determine the optimum
combustor inlet temperature for a fixed combustion temperature of 2015 R.
Variations of specific impulse, mixture ratio, and spouting velocity

with inlet temperature ranging from 200 R to 1000 R were evaluated using

a digital computer program for the TPU optimum design inlet pressure

(600 psia) and pressure ratio (50). At the preselected design point of

600 R, a total propellant weight of 298 pounds is required for the Phase 1B
booster mission profile. This weight was recalculated for new inlet
temperatures, taking the effect of changing specific impulse, turbine
efficiency, and tank weight into account. Because the adiabatic head
increases with increasing temperature, more energy is available. But, this
also increasg§ spouting velocity, decreasing u/Co, and decreasing turbine
efficiency. For purposes of analysis, two approaches were taken: turbine
efficiency was assumed constant (optimistic) and turbine efficiency was
assumed proportional to u/CO (pessimistic). For the latter case, efficiency

varies as 1/Isp for constant u because CO is proportional to Isp.
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Results of the study are shown in Fig. 31 indicating that there is little
incentive to designing for higher than 600R inlet temperature. The

total weight curves optimize at about 900R but indicate a weight saving
of only L pounds for the variable7?T and about 12 pounds for the constant
QT case. The potential for improved bipropellant valve life for the
600R system over the 900R system could be traded against the small weight
savings. If very large quantities of propellant were required higher

inlet temperatures would be justified.

Effect of Cooling Requirements on Hydrogen Control

The contractual requirement that the APU be thermally self contained, i.e.,
that no heat be transferred to the vehicle, makes it necessary to use the
hydrogen to cool the hydraulic oil and the lubricating oil. In both of
these cases the heat load is fixed, so that the temperature rise in the

hydrogen is determined.

Tt is, of course, also necessary to control the temperature of both the
hydrogen and the oxygen entering the combustor chamber. Analysis has
shown that there is little to be gained by allowing this temperature to
exceed 600R. The design point has been chosen with inlet gas temperature
at 600R. A temperature equalizer is positioned ahead of the combustor

chamber to ensure equal temperature level in the two gases.
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Adjustment of gas temperature is accomplished in the regenerator where
heat is acquired from the exhaust gases. By using a bypass around the

regenerator, control is maintained.

The arrangement of the regenerator, hydraulic and lube-o0il coolers has
been studied and is shown in Fig. 32 . Because exposure of the oils to
cryogenic temperatures may result in freezing, especially of "dead"

fluid at startup, it is desirable to regenerate first. This ensures the
supply of warm hydrogen. To maintain 600R (1LOF) at the inlet to the
combustor, the minimum hydrogen temperature into the lube-oil cooler is
66F which is controlled by the regenerator bypass. The required
hydraulic-oil cooler hydrogen inlet temperature varies between -305 (full
hydraulic cooling) and +66F (no hydraulic cooling). The corresponding
tube-wall temperatures vary between -100 and +150F which is above the pour
point of the hydraulic fluid. If the relative location of the cooler

is reversed, and hydraulic cooling is required without lube cooling,
the "dead" lube o0il would see a -200F hydrogen temperature which could
plug the cooler depending upon the duration of this out-of-phase cooling

condition.

For purposes of analysis the effectiveness of the coolers was assumed
constant (& y = 69%, € [ = 85%), with maximum hydraulic and lube cooling
loads of 25 Btu/sec and 7 Btu/sec respectively, being accommodated by a
hydrogen flow of .0L77 1b/sec (SPC = 2.1 @ 56 HP). Since the lube cooler

is a counterflow type the lube oil inlet temperatures determine hydrogen
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exit temperature (equalizer inlet). The regenerator was assumed to be

in the 100% bypass mode providing hydrogen into the hydraulic cooler at
the vehicle source temperature. As vehicle hydrogen temperature increases
the lube 0il inlet temperature must increase for the hydrogen to serve as
the heat sink for the 7 Btu/sec load. A maximum combustor inlet
temperature is then uniquely determined by the lube cooler and equalizer
effectiveness. Results of the study are presented in Fig. 32.. The
region below the curve represents conditions for which adequate cooling
is provided by the hydrogen. Auxiliary cooling must be provided for
points above the curve. If the source temperature is less than maximum
for a given lube-oil temperature,the regenerator will provide the addi-
tional heat required in order to achieve the maximum combustor inlet
temperature. The maximum recommended continuous operating temperature

of MIL-L-23699 oil is LOOF so that a vehicle source temperature of about
370R is acceptable resulting in a combustor inlet temperature of BOOR
for the 85% effectiveness lube cooler. Reduced cooler effectiveness

results in lower combustor inlet temperature.
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‘APU SYSTEM DEFINITION

The Space Shuttle APU consists of three major subsystems as shown in Fig. 33.
1. The propellant conditioning system
2. The turbo power unit
3. The power control

Although the power control is an integral part of the turbo power unit,

its design has major implications on the rest of the APU and for that reason

is considered as a separate subsystem.

Propellant Conditioning

The major tasks of the propellant conditioning subsystem are:

1. to control mixture ratio to the TPU

2. to establish the proper level of propellant pressure and
temperature to the TPU inlet

3. to accommodate variable hydraulic and lube oil cooling loads.

Mixture ratio is controlled to the TPU by three separate functions:

1. the relative value of hydrogen and oxygen pressure is maintained
nearly constant at the main propellant valve (MPI) inlet. This
is accomplished by a differential bressure regulator located in
the oxidizer line just upstream of the TPU. The regulator senses

hydrogen pressure and throttles the oxidizer to equalize pressures.
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2. the relative value of hydrogen and oxygen temperature is maintained
nearly constant at the MPV inlet. This is accomplished by a
passive H2-O2 temperature equalizer-heat exchanger.

3. the main propellant valves are mechanically linked and provide a
constant effective area ratio independent of valve position thus,

mixture ratio is maintained constant at all power levels.

The accuracy of this control is of course dependent upon the accuracy with
which the above functions can be accomplished during both steady state and
transient performance. Propellant pressure level is established by a
pressure regulator located in the hydrogen supply line to the APU. Tt should
be noted that propellant pressure level at the TPU inlet may vary over a
moderate range as a result (for example) of a variation in PCS pressure drop
or regulator inaccuracy, without any detrimental effect to performance.
Propellant temperature level delivered to the TPU is controlled by the
regenerator and flow splitter control. TPU hydrogen inlet temperature is
maintained nearly constant independent of supply temperature variations,
hydraulic and/or lube oil cooling load variations, or APU power modulation.
The bypass control senses hydrogen temperature at the TPU inlet. Any error
with respect to a reference temperature results in activation of the bypass
flow splitter valve which diverts more or less flow through the bypass line,
varying regenerator exit temperature to restore the proper contirol tempera-

ture.

The propellant conditioning system accommodates varying hydraulic and lube
0il cooling loads. The regenerator and flow splitter control maintains

a nearly constant hydrogen sink temperature for the lube 0il cooler consistent
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with maximum allowable lube oil temperatures.

Tarbo Power Unit

The major task of the turbo power unit is to efficiently convert chemical
energy to hydraulic and electric energy. This is accomplished by optimizing

the specific propellant consumption over the flight-power profile.

Power Control

The major task of the power control is to accomodate the complete range of
power demands over the altitude profile and maintain TPU speed within an
acceptable range. This is accomplished by:

1. pressure modulation of turbine inlet pressure

2. pulse width modulations of turbine inlet pressure

3. hybrid control - combined pressure modulation plus a variable

(two step) turbine area.

Pressure modulation of turbine inlet pressure is provided by a mechanically
linked bipropellant throttle valve which is actuated when the control system
senses a speed error and attempts to maintain the TPU at a fixed reference
design speed. Pulse width modulation of turbine inlet pressure is provided
by an "on-off" mechanically linked bipropellant valve which is actuated when
the control system senses a speed Qutside a predetermined band. TPU speed
varies continuously with an amplitude as set by the speed band and at a
frequency which is dependent primarily on TPU inertia. The hybrid power
control is composed of a dual combustor-nozzle assembly, each of which

contains a mechanically linked bipropellant valve. Each combustor-nozzle
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assembly covers a discrete portion of the turbine arc. The "sustainer"

power’ level is approximately 25 to 35 percent. The high-power combustor
is activated when the power demand exceeds the capacity of the sustainer
assembly. The high-power combustor can either be operated in a pressure

modulated or pulse mode.

TURBO POWER UNIT

Figure 34 summarizes the turbine design conditions and characteristics which
were evaluated. For example, the first line in the chart represents a ve-
locity-compound turbine with pulse modulating power control for use in systems
A1 or D1. This turbine was designed for a maximum turbine inlet pressure of
600 psi. Because it is a pulsed machine, that is also the design pressure
level. From previous studies (Phase IA) g pressure ratio of 50 has been
established as approximately optimum for this inlet pressure level. The
efficiency predicted at this design point condition is 0.491. The corres-
ponding first and second stage blade heights and admission fractions are

also given in the tabie. The shaded areas in the following columns indicate

that the off-design performance of this turbine was calculated and, in addition,
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steady state temperature distributions and corresponding thermal and cen-

trifugal stresses were determined.

The remainder of the table is essentially self-explanatory. For systems

A/, and D3A the efficiency was estimated by interpolation. On systems A3

and D3, which represent pressure-staged turbines with pulse-modulating power
control, the effects of tip-clearance variation and design power level were
also investigated. Power level was varied from 100 to 750 HP. The clearance

and power level effects are described later in this section.

One of the significant results shown in Fig.34 is the clear superiority of
the pressure-staged machine over the velocity-compound mechine at a pressure
ratio of 50. It would be expected that at lower design pressure ratios the

difference would be even more marked.

Figure 35 summarizes the thermal and stress analyses performed in Phase IB.

It shows schematically the manner in which allowable stresses were established
for use with the calculated temperature distributions. Safety factors are
applied to the minimum (3gr) strength of the material to determine the allow-
able stress at rated operating speed and temperature. This is done both for

short-time and long-time strengths.
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An overall safety factor is constructed for each failure mechanism and
duration. For example, the short-time vield overall safety factor is
constructed as follows. The basic material saf'ety factor of 1.7 isg applied
to account for unknowns in the basic applied stress. An additional allowance
of 1.1 is applied to represent the thermal transient stresses which are known
to be significant but have not yet been estimated. A factor of (7.05)2 is
applied to represent the upper limit of the normal speed control range.
Finally, a factor of (7.15)2 is applied to represent a turbine overspeed

test such as that required by TSO-C77 for auxiliary power units for aircraft.
These last two factors are squared because the centrifugal stresses are a
function of the square of the rotative speed. The overall safety factor
applied to the material yield strength to determine an allowable stress based
on yield is 1.77. This represents the allowable stress at rated rotative
speed and temperature conditions which will prevent yielding at the stated
overspeed conditions. The same process is applied to the ultimate, creep,

and rupture strengths.

Figure 36 presents the actual plots of allowable stresses for Astroloy using
factors of safety constructed as deseribed in Fig. 35. The short-time stresses
are assumed to apply at the full power condition which represents the maximum
disk and blade temperatures. Because 5 percent of the design life will be
spent at full power conditions, creep and rupture data for 50 hours are also

shown on this curve. The region of safe operation is below
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the curves. The critical stress and metal temperature which applies at
the full power condition to each of the five first stage disks studied is
also shown on the short-time portion of the figure. All (except one) are

within the allowable range.

The right-hand side of the figure shows the allowsble stresses corresponding
to the long-time application of stresses associated with the minimum power
condition and its somewhat lower turbine metal temperatures. The region of
safe operation again is below the curve. Data points for the first
stage disk stress-temperature combinations under the minimum power condition
are shown on the curve. Two of the five turbines are in the unsafe region.
Additional adjustments to disk geometry, inlet temperature, or tip speed

will be necessary to bring those machines into the safe region.

Careful study of Fig. 36 shows some important trends which should be noted.
Comparison of Systems Al/D1 and A3/D3, for example, shows that the pressure-
compound machine is significantly higher in disk temperature than the velocity-
compound machine for the same conditions. This results from the larger expan-
sion ratio (to a lower temperature) of the velocity-compound first-stage nozzles.
When the pressure and pulse modulated systems are compared (A2/D2 vs A1/D1 and
B2/D4 vs B1/D5), the pulse modulated is seen to be lower in disk temperature.
Again this is caused by the higher design expansion pressure ratio of the pulse
modulated machine. Finally, comparison of the 600 psia A3/D3 system with the
150 psia B1/D5 system shows that the higher pressure system runs lower in disk

temperature, again because of higher design pressure ratio.
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Figure 37 shows an example of the design for the first stage of systems A3/D3.
It is seen that the blade temperature is very close to the adiabatic wall
temperature which causes the heat transfer to occur. This is caused by a
very high heat transfer coefficient between the gas and the blades which in
turn is caused by very high thermal conductivity of the gas (primarily hydrogen)
and by the small dimensions of the blades. This results in small thermal time
constants which produce large transient thermal stresses. The lower portions
of the figure show the disk shape and the corresponding radial and tangential
stresses. The disk has been designed as a constant stress disk from the hub
up to the neck or critical region of the disk. It should be noted that the
blade root stress on a steady state basis is significantly below the allow-

able stress, thus leaving room for variations in blade height, if desired.

Figure 38 presents a summary statement of the kinds of mechanical analyses
which must be done on the selected turbine during Phase II of the present
study based on analysis done under Phase I of the contract. The heat trans-
fer analysis done so far indicates that it is necessary to consider not only
the steady state temperature distributions in the machinery, but also the
transient distributions. Important transients will occur at startup when
the machine is cold and suddently subjected to a high temperature, at load
changes when the effective heat transfer level changes, and at shutdown when

the driving temperature is suddenly removed from the turbine.

Under each of these steady state and transient temperature conditioms, it is

necessary to examine the critical stresses. For the steady-state temperature
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distributions, all the individual stresses such as ultimate, yield, etc. must
be examined with their appropriate safety factors. This is similar to the
analysis which was performed in Phase I, and it is intended that it will be

done for more conditions and on a more refined basis.

Transient thermal stresses require that the contribution of each potential
failure mechanism with respect to the total material capability be assessed.
For example, the fraction of the total material capability utilized at a
particular stress level can be represented as the ratio of the operating
time at that stress level to the stress rupture life at that stress level.
Similarily, the number of plastic stress cycles experienced as a fraction
of the low-cycle fatigue cyclical life at this strain level represents
another portion of the total material capability utilized. The sum of

all these fractions (with appropriate safety factors applied to either the

applied stress or to the required life) must be less than unity.

The thermal and stress analysis to be performed in Phase II will allow
additional tradeoff studies to be made. Specifically, the relationships
between combustion temperature and cooling penalties can be assessed as well

as the relationship between combustion temperature and turbine tip speed.

Figure 39 ghows the typical effect of turbine tip clearances on system
performance. The design value of tip clearance is 0.0156 inch at a tip
diemeter of 6.87 inches (in the second stage). Figure 39 shows that if
the clearance is cut in half from the design value the reduction in required
propellant flow will reduce the propellant system weight approximately 6 per-

cent. Similar reductions in propellant system weight would be expected under
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other design conditions. This improvement in performance must be traded
against the necessity to reduce the total allowable creep of the turbine
material in order to prevent rubbing of the turbine during the design life
of the machine. The creep is reduced either by reducing the inlet gas
temperature or the turbine tip speed or both. These reductions will
reduce the system performance and increase the propellant system weight.
The potential 6 percent weight reduction mentioned above, however, implies

thet additional study is worthwhile.

Figure40 shows the effect of turbine inlet temperature on propellant system
weight. If only the propellant properties are considered, i.e., the turbine
efficiency is assumed constant at all design temperatures, increasing inlet
temperature produces fair benefits. If the turbine efficiency variation is
considered, the beneficial effects are greatly reduced. The increased tempera-
ture reduces turbine efficiency by inereasing spouting velocity (reducing velocity
ratio, g%), and by reducing the Reynolds numbers in the turbine due to reduced

gas density and increased gas viscosity. Thus, there appears to be a minimal

real benefit to increased turbine inlet temperature.

Figure 41 shows a typical turbopower unit (TPU) assembly. The hydraulic power
is produced by two 3,000 PSI hydraulic pumps and the electrical power by one
12,000 RPM alternator. The corresponding gearbox, turbine assembly, and
combustor assembly are also shown in Fig. 41, The total TPU weight as pictured
is 165 pounds. Of this weight, 93 pounds are contributed by the pumps and
alternator and only 72 pounds by the gearbox, turbine assembly, and combustor

assembly.
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The results of g preliminary study of the effect of output power level on
turbine efficiency and TPU weight are shown in Fig. 42. Output power was
varied from 100 to 750 HP. Turbine efficiency varied by about 10 percent
over this power range. The weight of the bare TPU varied by a factor of
approximately 3 while the complete TPU varied by about 5. Thus the specific
weight (1b/hp) of the TPU, as expected, decreased as power level increased.
It should be noted that part of this weight variation is caused by rotative
speed being reduced at the higher power levels. Tip speed was held constant.

Tip diameter therefore increased with power level.

Figure 43 shows the cutaway view of the typical turbine assembly. Among

the additional details which may be seen in this figure are the inlet arc ~
of the first stage. The second stage inlet arc is approximately twice the

size of the first stage, but is not shown explicitly. The interstage seal

shown is a simple labyrinth. Performance calculations as reported here have

been based on this seal configuration. Also shown in Fig.43 is additional

armor material around the turbine disks to provide burst protection. The

amount of material shown is based on using a weight equal to the weight of

the rotating disks. This approximation has been inferred from the limited

data so far available from the NASA-Sponsored Rotor Burst Protection Program

being conducted at the Naval Air Propulsion Test Center in Philadelphia.

Table 3 presents more detailed information on the five preliminary turbine
designs studied in Phase IB. All these turbines were two stage machines de-
signed for an inlet temperature of 1550 F with a meximum second stage tip

R

speed of 1750 ft/sec (first stage maximum tip speed is 1700 ft/sec) and
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rotative speed of 60,000 rpm. (During Phase II of this present study
additional values of these parameters will be studied.) This chart presents
several types of key parameters: geometric--tip diameter, blade height, degree
of admission; performance--efficiency, velocity ratio, relative Mach number,
and Reynolds number; thermal--heat transfer driving (adisbatic wall) tempera-
ture, average blade, neck and hub temperatures at maximum power, and neck
temperature at minimum power. These latter metal temperatures are based on
holding the bearing temperature at a constant 400 F. One important factor
éhown clearly in the chart is the effect of reduced design pressure ratio.
This may be seen by comparing the metal temperatures for systems A3/D3,

B1/D5, and B2/D,. The lower pressure ratic increases the driving temperature;

the metal temperature closely follows the driving temperature.

Figure44 shows the off-design characteristics of the five turbines studied.
Figure 44A shows the basic energy available from the propellants as a function
of expansion pressure ratio. Figure 44B presents the same expansion energy
data in a different form. For each of several design pressure ratibs, the
off-design ideal work output as a function of off-design pressure ratio is
shown. It will be seen that low pressure machines are much more sensitive

tc the same ratio of off-design pressure ratio.

Figure 44C presents the variation of turbine efficiency with off-design
pressure ratios. These data were constructed based on the estimated stage

off-design torque and flow rate as functions of stage velocity ratio and
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stage pressure ratio. Stage data were combined to determine stage pressure
ratio for each overall pressure ratio. The efficiencies greater than the
design value shown in Fig. 44C at pressure ratios below the design value
result from the combined effects of pressure staging, the work ratio effect

of Fig. 44B, and the pressure ratic effect on stage performance.

When the off-design efficiency and adiabatic head ratios are combined, the
off-design work output is obtained as shown in Fig. 44D. These curves are
generally similar to those of Fig. 44B, but somewhat modified. Low design
pressure ratio mechines still seem to be most sensitive to off-design pressure
ratios. This should not be especially surprising. For example, Case B2
which has a design pressure ratio of 3.2 would have a zero adiabatic head

at a pressure ratio ratio of 0.288. Cases Al and A3 on the other hand with
design pressure ratios of 50 would have zerc outpﬁt head at a pressure ratio

ratio of 0.02.

The data of Fig. 44p were used in the system optimization studies described
earlier. At each power level and pressure condition in the power profile the
off-design data of Fig. 44D were used to determine the SPC at that conditicn.

Total propellant usage is the sum of these individual values.

PRELIMINARY COMPONENT DESIGNS
A review of component availability and a preliminary design was performed. In

general, these designs formed the basis for the operational analysis conducted

with the analog model which will be discussed in the following section. However,

pump designs were not utilized in the model because the analog model simulated

supercritical propellant storage.
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Pumpg

Pump-fed systems will require the delivery of hydrogen under pressure. For
System A, this pressure is 860 psia, corresponding to a head of 28,500 feet,
at a peak flow of & gpm. A number of pump types have been evaluated for

applicability and availability.

Centrifugal Pump. A small, single-stage centrifugal pump of the type required

here has been designed, fabricated, and tested at Rocketdyne under NASA Contract
NAS3-12022. This pump (designated Mark 36 and depicted in Fig. 45) has been
run for over one hour with Freon 12 at 75,000 rpm, 1500 psia (2800 ft head),

and flows up to 13 gpm. It was designed for liquid fluorine service.

As discussed in the section on storable propellants, this pump is applicable

to hydrazine service where a slight adjustment to 81,000 rpm will provide

the required head and flow. For hydrogen a redesign is necessary to produce

the vastly inecreased head required (10 times) by either increasing the speed

or staging the pump, or both. As presently designed, the head variation over
the required delivery range is small (2 percent). If this characteristic was
maintained for the multistage design the TPU gearbox would be utilized as a
constant speed drive. However, this would require the APU to be located close
to the hydrogen tank to assure adequate NPSH to the pump. If the APY was renmcte

from the tank, a separate drive using a gas turbine with a hydrogen gas tleed
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source and closed loop speed control would be required.

Gear Pump. Rocketdyne has also designed and fabricated a low specific speed
gear pump (Mark 37) for a liquid fluorine application, which is directly
applicable to System Al. Unfortﬁnately, no test data for the pump has been
obtained to date due to funding limitations. However, performance analysis
with liquid hydrogen as the pumped fluid indicates that the required pressure
of 860 PSIA should be obtained with reasonable radial and axial clearances at
speeds of 5750 RPM (peak flow) to 2750 RPM (idle flow). Flow control could
be obtained by means of a hydraulic or electrical motor which would modulate
speed accordingly to maintain a fixed (reference) discharge pressure. Use

of the electrical motor would allow in-tank mounting of the pump to assure
positive liquid acquisition at the inlet. A photograph of the Mark 37 and
summary of predicted performance in hydrogen at peak and idle power level

is presented in Fig. 46,

Liguid Hydrogen Vane Pump. Pesco Products, Division of Borg Warner, has

designed and tested a vane pump (under NASA Contract) for a liquid methane
system (SST application) to provide 12 GPM at 900 PSIA and 4000 RPM. Initial
testing is being conducted with liquid hydrogen to determine material compati-~
bility and clearance effects. A total of 12 hours of operation at flows to

40 GPM and discharge pressure to 260 PSIA at the rated speed of 4000 RFM

has been accumulated in liquid hydrogen. Further development is required
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to obtain the higher discharge pressures for System A. Preferred lccation
for the pump is in the tank to maintain NPSH, necessitating an electric
motor drive. The pump utilizes six vanes in a double lobe configuration
to balance the pumping element and minimize radial loads on the bearings
and minimize discharge pressure oscillations. A schematic of the pump
integrated with an electric motor drive (Pesco-Brushless DC) is shown in
Fig.47 , including a summary of predicted performance in hydrogen for

System Al.

It is evident that considerable development of low specific speed cryogenic
pumps is required to meet the technology required for a pump fed hydrogen
source. The small clearance requirements of the vane and gear pump to achieve
acceptable volumetric efficiency are incompatible with the long life and high
reliability required of APU components. The high speed required for the cen-
trifugal pump (DN 106) with complex di?ve and controls also implies question-
able 1ife and reliability. Development risk for the pump component must be
carefully evaluated in terms of time and cost with respect to development

requirements of alternate schemes.
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Regenerator

The regenerator was designed to provide full propellant conditioning at
peak power (170 Btu/sec) for a 600 R injector with 10 percent bypass flow
and no heat input from either cooler. The bypass is included to provide

some control margin,

Several configurations were evaluated, resulting in selection of a single
pass, parallel flow, shell and tube design. A typical preliminary design
applicable to a system Al type booster APU is shown in Fig., 48. At peak
power, 90 percent of the total hydrogen flow passes through the tube
bundle (283 1/8-in-dia tubes) in parallel flow with the exhaust gas an the
shell side., The parallel flow exchanger resulted in a 5 pound weight
penalty compared to a counterflow type. This is considefed acceptable to
avoid fouling due to condensation and freezing of exhaust gas water vapor.
The tube wall temperature for the parallel flow design remains above the
condensation temperature over the entire range of vacuum to sea level

operation. .
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An exhaust nozzle sized to provide a minimum pressure of 6 psia at the
regenerator hot-gas exit at zero ambient pressure is provided in the system,
This increases gas density permitting a smaller regenerator size. At peak
power the maximum exhaust gas pressure drop through the regenerator is

then 2.6 psi, which, together with a 1.5 psi duct loss, results in a turbine
exhaust pressure of 10 psia. No significant performance degradation results
at this condition because the turbine is still operating above design
pressure ratio. The contribution of regenerator pressure drop to turbine
off-design performance is about 1 percent at pressures greater than 10 psi,

representing about 3 pounds of propellant weight.,

Detailed stress analysis of the regenerator will be initiated in Phase II

of the program after definitive system selection., Preliminary analysis
during Phase I indicated that stress due to thermal expansion resulting

from an exhaust gas AT of 650 F and an HyAAT of 672 F can be relieved by
providing circumferential convolutions (bellows) to accomodate about 0,050
inches of differential expansion of the outer shell relative to the tube
bundle. The axial force acting on the bulkheads due to the hydrogen-exhaust
pressure differential is assumed to be carried by external structure coupled
to the bulkhead or hydrogen header. Brazing experience at Rocketdyne has
indicated that a joint engagement length of three times the tube wall
thickness results in a shear strength equal to the tube wall tensile
strength. To preclude leakage and ensure a high strength joint, a bulk-

head thickness of 0,25 inches was selected (25 times wall thickness).
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Hydraulic Cooler

Sizing of the hydraulic cooler was based on the assumption that 50 percent
of the hydraulic flow power representing servo and actuator leakage and
100 percent of hydraulic pump inefficiency must be accommodated by the
cooler. The maximum heat load occurs with one-hydraulic pump pressurized
and the other depressurized resulting in 32 HP of losses and 3.5 HP (50 per-
cent hydraulic power) in frictional heating. Following aircraft practice,
the additional 50 percent is assumed to be dissipated through the lines.
The cooler is located downstream of the regenerator in the return side of
the system, utilizing the hydroéen gas as the coolant. Analysis was based
on the use of a silicate ester base hydraulic fluid (Chevron M2V) with a
maximim operating temperature of 250 F in a 4000 PSI system. Reservoir
pressure was assumed to be 100 PSI. Corresponding flow at idle is 3.1 GPM
and 83 GPM at peak power with 80 GPM of pesk flow doing work. The maximum
fluid 4T is 136 F for the maximum 25 BTU/sec heat load which occurs at a
56 HP gearbox output condition due to the low hydraulic flows at that con-

dition (3.1 GPM).

Cooler configuration analysis resulted in selection of a single pass shell
and tube counterflow design using 6061-T6 aluminum to minimize weight. A
typical design for a system Al booster APU is shown in Fig. 49, The hydrau-

lic fluid flows on the tube side and hydrogen on the shell side. Flow is

in the laminar regiﬁe for both fluids throughout the entire power profile

so heat transfer coefficients sre independent of flowrate. Hydraulic <P
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ranges from 2 psi at idle to 54 psi at peak power. This will result in a
slight increase in pumping power for the short peak-power periods, but will
result in a negligible spc penalty. Temperature control is achieved with

a three-way thermostatic bypasss valve designed to maintain 100 F

hydraulic outlet mixed temperature. The cooler was sized such that the
hydrogen and hydraulic side heat transfer coefficients are equal

(47 BTU/hr—ftZ—OF) providing a minimum tube wall temperature greater than
the pour point of the hydraulic fluid. It should be noted that when hydrau-
lic cooling is not required (i.e., startup) the hydrogen inlet temperature
will be high (66 F) since the regenerator provides the heat input normally
contributed by hydraulics to achieve the required injector inlet temperature.
Consequently,'freezing'(excessive P) of the hydraulic fluid should not be

a problem.

Leakage of the higher pressure hydrogen (800 PSI) into the low pressure
hydraulic fluid (100 PSI) due to failure of a brazed tube joint is avoided
by use of a double bulkhead at each end with the section between bulkheads

vented to low pressure (turbine exhaust).

Preliminary stress analysis of the cooler indicates that the largest differ-
ential temperature (bulk metal) between the outer shell and tubes will be
about 145 F at the maximum heat load, resulting in a differential contraction
of 0.035 inches between the outer shell and tube bundle. A tension force due
to the hydrogen-hydraulic AP across the bulkhead (700 PSI) reduces the con-

traction by 0.010 inches. The critical buckling load per tube is 12 pounds
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indicating an outer shell circumferential convolution with a stiffness of
less than 50,000 1b/in. will accommodate the travel without buckling the

tubes (S.F. = 4.0). Another Possible method of compensating for thermal

growth is to prestress the outer shell.

Detailed steady state and transient stress analysis will be conducted

during Phase II in support of the specific system(s) selected for evalua-

tion.

Lubricating-0i1 Cooler

The lubricating-oil cooler is located downstream of the hydraulic-oil cooler,
utilizing the hydrogen gas as the sink for the heat load contributed by the
alternator, gearbox, bearings, seals, and lube pump. The maximum cooling load
was estimated to be 10 HP for an oil flow of 5 GPM resulting in a temperature
rise of 25 F. A counterflow shell and tube design almost identical to the
hydraulic cooler (except for tube length) was selected to take advantage of
the technological commonality (Fig.50 ). The counterflow configuration is
lighter weight than & parallel flow type and results in higher hydrogen
temperature for the same effectiveness. A cross-flow exchanger is more

compact but heavier than the counﬁerflow unit due to more complex header
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design to preclude leakage. Hydrogen (high pressure) leakage to lube-oil
(low pressure) is avoided with a vented double bulkhead design at each end
of the cooler, as in the hydraulic-oil exchanger. Temperature control is

provided by a three way bypass valve with passive thermostatic actuation.

Calculations were based on the properties of a synthetic ester base oil
(MIL-L—23699), which is widely used in gas turbines and auxiliaries. Flow
is in the laminar regime for both the hydrogen and the oil so that the heat
transfer coefficients are independent of flow and pressure drop for both

fluids is less than 1 PSI.

Preliminary stress analysis indicates that the force acting on the bulkhead
free-flow area dominates the stresses induced due to differential thermal
contraction of the outer shell relative to the tubes. Differential travel
is only 0.005 inches so that a bellows is not required in the outer shell.
Both the outer shell and tubes are in tension with a resultant shell axial
stress of 3000 PSI and tube stress of 392 PSI. The radial stress in the
outer shell is 18,200 PSI for 860 PSIA hydrogen giving a factor of safety
of 2.5 on the ultimate and 2.2 on the yield for the 6061-Té aluminum. Tube

radial stress is only 300 PSI assuming 100 PSIA lubricating-oil pressure.

It should be noted that since the lubricating-o0il cooler is the last heat
source element for the hydrogen prior to entering the H2/02 temperature

equilizer (sink) the maximum hydrogen injector inlet temperature is determined
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solely by the maximum lube oil temperature and cooler effectiveness. When
the lube o0il is below the ‘cooling reference temperature (i.e., startup)
the hydrogen becomes a heat source for the oil. Details of these opera-

tional characteristics are discussed in the Controls Section.

Ho/0> Temperature Equalizer

Thermal conditioning of the oxygen is accomplished passively with the use

of a counterflow shell and tube heat exchanger using hydrogen as the heat
source. The desigg requires 'virgin metal' construction to eliminate the
possibllity of a weld or braze joint failure allowing mixing of the hydrogen
and oxygen which could result in catastrophic failure. A preliminary design
applicable to the system Al booster APU igs shown in Fig. 51. Three concen-
tric tubes are used to form two annular flow passages in which the oxygen
flows through the inner annulus counter to the hydrogen flow in the outer
annulus. The central tube is used to increase velocity (heat transfer
coefficient) of the oxygen. Construction details are given in the figure.
No Hp/0Op communication can occur unless the intermediate tube cracks or
develops porosity. A double wall design could be utilized to reduce the

probability for this type of failure (see figure).

Heat exchanger effectiveness at peak power is 86 percent and the heat flow
is 10.2 BTU/sec. The hydrogen temperature drops only 40 F (640 to 600 R)
in bringing the oxygen from 200 R to 580 R. The pressure drops are not

excessive, being 12.6 PSI for the GH2 and 2.8 PSI for the oxygen.
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The heat transfer (middle tube) wall temperature is very close to the
hydrogen gas temperature since the oxygen heat transfer coefficient con-
trols (hg = 442, hyg = 4030 BTU/hr-ft<-OF) and the outer tube wall will
also be close to hydrogen temperature since it will be insulated. Conse-
quently, stresses due to differential expansion are small and no stress-
relieving expansion joints are required. Radial stress in the outer tube
due to hydrogen pressure of about 800 PSI is 11,600 PSI providing a more
than adequate margim of safety in the 304 stainless steel. No pressure
differential is present across the inmer tube since it sees the oxygen
pressure on both sides. The middle tube is very lightly stressed since

it sees only differences in Ho/Oo pressure, which are small.



TMR0115-3137
Page 101

Propellant Conditioning System-Control Elements

A description of the propellant conditioning system control elements is

shown in Fig, 52,

Differential Pressure Regulator - The schematic shown in the upper left of

Fig.52 illustrates a design concept for the differential pressure regulator.
The regulator senses hydrogen pressure delivered to the fuel side of the
bipropellant throttling valve. Oxidizer flow resistance through the regulator
is controlled so that, under flowing conditions, the oxidizer pressure
delivered to the bipropellant throttling valve is an increment lower than

the fuel pressure.

A linear-displacement valve is positioned by a spring-biased metal -diaphragm
actuator. Two opposing single-convolution diaphragms are used, with an
intermediate vent cavity, to eliminate the potential for convolution
reversal. The normally-closed dual-poppet valve is designed for nominal
balancing of oxidizer inlet pressure axial forces applied to the valve so
that regulated outlet pressure is not significantly affected by variations

in inlet pressure.

Under flowing conditions, the regulator valve and actuator are positioned
to maintain an axial force balance in which sensed fuel pressure force is
opposed by oxidizer outlet pressure forces and by the helical bias spring
and metal diaphragm mechanical spring forces. The spring forces result in
a regulated oxidizer pressure that is slightly lower than the sensed fuel
pressure. The orifice in the fuel pressure port and the volume of the
pressure-sensing cavity are sized to provide dashpot damping for dynaric

stability.
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The schematic shown in the lower left of Fig. 52 illustrates a differential
pressure regulator similar to the one above except for the addition of two
solenoid actuated two-way valves. The regulator in the lower left of Fig, 52
is designed for operation in a system in which either turbine inlet
temperature or exit temperature is monitored. If the monitored temperature
exceeds a preset limit the solenoid valve that is ported to the fuel side

of the diaphragm actuator is energized to permit g restricted outflow.
Pressure in the sensing cavity is then less than the external fuel pressure,
as determined by the ratio of the sensing cavity outflow’and inflow effective
flow areas. A corresponding decrease in regulated oxidizer outlet pressure
results in a lesser oxidizer flowrate and a lower oxidizer/fuel flowrate
ratio. A decrease in £as generator combustion temperature results. The
solenoid valve remains open until the monitored temperature decreases to &
preset lower limit, at which time the solenoid is deenergized, and

regulator functioning without an offset in sensed fuel pressure is resumed.

If the monitored temperature is lower than a preset limit, the solenoid
valve that is ported to the feedback pressure-sensing side of the diaphragm
actuator is energized to permit a restricted outflow. The feedback pressure
is then less than the oxidizer regulated outlet pressure, as determined by
the ratio of the feedback pressure-sensing cavity outflow and inflow
effective flow areas. A corresponding increase in regulated oxidizer outlet
pressure is required in maintaining an actuator force balance. A greater

oxidizer flowrate and oxidizer/fuel flowrate ratio result, and the gas
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generator combustion temperature increases. The solenoid valve remains
energized until the monitored temperature increases to a preset upper limit,
at which time the solenoid is deenergized, and regulator functioning

without an offset in sensed feedback pressure is resumed.

Regulator Bypass Valve (Flow Splitter) - Two concepts of a regenerator bypass

valve are shown in Fig. 52. As shown in Fig. 52d, the inlet port is supplied with
hydrogen at pressure, P.. One of the outlet ports, at

pressure P, delivers fuel directly to the regenerator. The other outlet

port, at pressure PD delivers fuel to a bypass line. A closed loop control
system positions the valve to regulate TPU inlet temperature by controlling

the regenerator and bypass flow resistances.

Both design concepts incorporate metering ports designed so that

Ab = 1 - AR
Ab(max) Ap(max) Ab = bypass flow effective area
AR = rpegenerator flow effective
ares.

as the actuator is displaced from its normal position, i.e., bypass flow
area closed. This area relation minimizes flow impedance changes with valve

position.

A linear-displacement spool type valve is shown in lower right of Fig.51
The design includes a torque-motor-actuated three-way servovalve and a
solenoid-actuated two-way shutoff valve for control of the cavity pressures
in a piston actuator. With the shutoff valve in its normally-closed
position when supply pressure is applied, all internal pressures equalize

at Ps. The servovalve is spring biased to port supply pressure to the cavity
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at pressure PC. Supply pressure is also ported through an orifice with
effective flow areas and the piston actuator cavity volumes are sized so
that pressure Pc will increase faster than pressure PD and the spool valve
will remain in its normal position when supply pressure is initially

applied,

When the shutoff valve is energized to its open position, the servovalve

outlet is ported to a discharge pressure that is lower than supply pressure.

The actuator is designed to accommodate operation with a compressible fluid
and assumes gaseous inlet condition of the propellant. The actuator piston
is hollow and an orifice with effective flow area A2 interconnects the
cavities at pressure PD and PE' The orifice area and cavity volume
associated with pressure PE are sized so that the dynamic interaction between
pressures PD and PEcontributes damping in obtaining dynamically stable

operation with the compressible operating fluid,

The spring cavity at pressure PA is ported to supply pressure to maintain
PA nearly equal to PS during valve motion transients. The cavity at
pressure PB is interconnected with PS and Pc by valve and stem guide
Clearances. This cavity volume is small enough to contribute dashpot damp-

ing of motion transients.

Under operating conditions, spool valve position is controlled by the
modulating servovalve. The cavity at pressure Pc receives inflow through
guide clearances from pressures PB and PD and servovalve leakage inflow

from PS. The servovalve controls outflow from Pc to PDISCHARGE and thereby



TMRO115-3137
Page 106

controls Pc to maintain a spool valve and piston actuator force balance at
any spool valve position. When Pc decreases, PD also decreases, with flow
from PS to PD through orifice area Al and flow from PD to Pc through the
piston clearance, and pressure PB has a similar decrease. The helical
spring force acts in the direction of permitting Pc to be less than PD

under steady-state conditions with forces balanced.

A position transducer attached to the piston provides a spool valve

position feedback electrical signal for closed loop position control.

This design concept requires no dynamic seals other than the solenoid-
actuated shutoff-valve poppet-and-seat closure seal. When the shutoff valve

is deenergized, all leakage paths are blocked.

The upper right of Fig. 51 illustrates a design concept for a rotary bypass
valve with electric motor actuator. The rotary valve flow windows are
contoured for the flow area relationship previously described. This design
concept includes an anti-friction thrust bearing for axial positioning of
the valve in the presence of unbalanced forces. Angular positioning of

the valve is controlled by a gear-head electric servomotor with position-

1imiting mechanical stops in the gear train.

The gear train and the motor are enclosed in a container that is pressurized
internally with hydrogen at valve inlet supply pressure. This concept

eliminates dynamic seals, and therefore eliminates the potential for

dynamic seal leakage.
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Because of the low valve effluent temperature, circulation flow between +he
valve cavity and the motor enclosure is restricted at the valve shaft so

that heat transfer will ensure the presence of simi-stagnant gascous hydrogen
in the motor enclosure. It may be necessary to design the enclosure to
ensure sufficient heat transfer to maintain the motor temperature within its
allowable limits. Some 115 volt, LOO Hz, two-phase servomotors, used as
rotary valve actuators, are in use on the J-2 engine with motor operating
temperatures as low as 160°R and the gear train will include a valve-position
feedback transducer for closed loop control of valve position. A linear-
displacement transducer with a rotary-to-linear motion transmission in the
gear train can be used. Use of a voltage transformer type of transducer

is favored in preference to use of a rotary potentiometer to eliminate the

potential for arcing in a hydrogen-filled enclosure.

Shaft lip seals can be used to restrict circulation flow between the motor
enclosure and the valve cavity and to seal the enclosure against inward
migration of air or moisture under storage, handling, and standby conditions.
The enclosure will include provisions for purging and filling with a dry
inert gas. Tight sealing at low operating temperatures is not required,
provided that sealing against moisture is obtained subsequent to each

exposure to the operating temperature range.

Power Control valve Assembly

Pulse Control - A preliminary design concept for an on-off bipropellant valve,

applicable for a pulse speed control is shown in Fig. 53 . Requirements for

high cycle reliability is obtained by employing:
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1. No metal-to-metal bearing surfaces
2. No sliding sealing surfaces

3. Minimum linkage components
The design approach included the following factors:

1. Both oxygen and hydrogen sides actuate fail-safe and provide tight
shutoff because net load on scats increases with an increase in inlet
pressure,

2. Low differential pressure is achieved by large diameter scats

>. Fast responsc and low bellows and flexure stresses arc achieved
by short stroke

4. Positive actuation is achieved by large effective arca difference
between the oxygen and hydrogen bellows and hydrogen seat

Some detail design features are presented in Fig.52 . Qperation of the

bipropellant valve is as follows:

Closing - Fuel (gaseous’hydrogen at 40 30 F) is directed to the inside of
the stem bellows where, due to the large effective diameter and
spring load of the fuel-side bellows, the bellows loads the fuel
poppet to close. Oxidizer (gaseous oxygen at 40 *30 F) pressure
differential across the oxidizer poppet loads it to close. Fuel
lag on closing is provided by the clearance between the oxidizer
poppet and the stea.

Opening - Electrically energizing the three way solenoid pilot valve vents
the inside of the stem bellows and allows line pressure to open
the poppets. Fuel lead is provided (if required) by the clearance

between the oxidizer poppet and the stewm.
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Pressure Modulated Control - A conventional pncumatic actuator of the type

shown in Fig. 53 can be used in a turbine speed control system that uses
an electrical indication of turbine speed. The servovalve controls the
actuator cylinder pressures, and the transducer provides a position feed-
back signal for closed loop control of actuator position. An orifice

through the piston permits controlled damping.

The actuator is spring biased in the direction of opening the gas generator
bipropellant throttle valve. A normally-open throttle valve permits pro-
pellant inflow for starting a turbine when pneumatic supply pressure is

not available. As the turbine speed and the corresponding APU hydraulic
pump speed increasc during a starting transient, preumatic pressure becomes
available for closing the throttle valve to the position at which nominal

rated speed is obtained and maintained.

The mechanically linked bipropellant valve assembly is shown in the lower
right of Fig. 53. The flow resistance for each gaseous propellant is
controlled by the axial position of a movable contoured pintle with respect

to a converging-diverging fixed nozzle. Each valve is designed to maintain
gonic velocity at the‘flow throat, so that flowrates are directly proportional

to the inlet pressures and independent of outlet pressure variations.

Metal bellows are used as leak-tight valve stem frictionless dynamic seals.
lach bellows is enclosed in a cavity that isolates the bellows from direct
exposure to propellant flow, so that cycle-life capabilities will not be

degraded by direct~impingement of fluids or by dynémic driving forces.

The two valves are mechanically linked to a common actuator. Supply pressure

forces applied to the bellows provide bias forces that prevent backlash
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in the linkage clearances that are required in accoumodating minor misalign-

ments and fabrication tolerances.

The vented linkage cavity can be protected against inflow of moisture from

the surrounding ambient environment by the use of vent port check valves.

Linear displacement of the valves is required. As an alternate to the use
of a piston actuator, a rotary electric motor with a ball-screw rotary-to-
linear motion transmission could be used. Multiple brushless direct-
current motors on a common shaft have been developed to provide redundancy
of critical elements in actuators of that type. An example of this type
design is shown in Fig.54 depicting a Bendix Corp. redundant clectro-
mechanical closed loop serve actuator system as used on the Lunar Module

Engine,
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System Considerations - Hydrogen Environmental Effects

It has become well recognized that the properties of metals can be
profoundly affected by the environment, Of particular pertinence to
hydrogen-exposed systems is the relatively recent discovery that a wide
range of metals are susceptible to hydrogen-environment embrittlement,

The nature of this embrittlement, the conditions under which it can

occur, and the methods available to prevent it have been thoroughly
investigated at Rocketdyne during the past years. Based on these studies,
sufficient understanding exists at Rocketdyne to ensure that no

detrimental affects will be eéncountered in the APU,

The embrittling effects of hydrogen have long been known but the recognition
that there are different types of hydrogen embrittlement is more recent,
These different types of embrittlement can be designated as hydrogen-
reaction, internal—hydrogen, and hydrogen-environment embrittlement,
Hydrogen-reaction embrittlement can result, for example, from the

formation of an embrittling hydride (e.g., titanium hydride) or of high-
préssure gas pockets as the result of reaction of the hydrogen with

oxXygen to form water vapor or with carbon to form methane., Internal-
hydrogen embrittlement is that due to hydrogen absorbed into and through-
out the metal. The best recognized example of this embrittlement is

the delayed failure of hydrogen-charged, high-strength steels, Hydrogen
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reactions and absorption of hydrogen from the gas are accelerated by
elevated temperatures and, in most cases, embrittlement requires elevated
temperature exposure. Extensive absorption of hydrogen also can occur
because of electrolytic and chemical reaction processes. Hydrogen-
reaction embrittlement and internal-hydrogen embrittlement have been
extensively investigated over many years and methods of preventing these

types of embrittlement are well documented.

Hydrogen-environment embrittlement is under intensive study under NASA
funding as a result of hydrogen-storage vessel failures encountered in
recent years. The most comprehensive of these programs was conducted at
Rocketdyne and it was during these investigations that it was found that
quite a wide variety of metals are to some degree susceptible to hydrogen-

environment embrittlement. These, and other recent studies, have served

to clarify the nature of hydrogen-environment embrittlement and the conditions
under which it occurs. This improved understanding has made it possible

to develop design approaches and methods of minimizing or preventing
embrittlement ﬁo ensure that failures do not occur because of hydrogen

*
environment embrittlement. A recent Rocketdyne report enumerates these

considerations.

* Hydrogen Environment Embrittlement of Metals, Rocketdyne Report RSS-8511,
Uolume 35, April 21, 1971

.
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from hydrogen-environment embrittlement, There are five reasons for this;:

1.

The parts exposed to hydrogen are designed for this service. Materials
are selected, based on Rocketdyne's extensive experience, to avoid
problems with environmental embrittlement, or stress factors are

used when the high strength steel alloys are used., In recent years

an increasing knowledge has accumulated regarding hydrogen-environment

embrittlement.

Turbomachinery and combustion devices for Rocketdyne engines (e.g.,
J-2), have a long, successful history of performance with hydrogen
fuel without a single failure assignable to hydrogen environment

embrittlement,

APU components are operating below 700 psia.

Many combustor and turbomachinery components will be exposed to a
mixture of hydrogen plus water vapor. It is known that the presence
of certain materials (such as oxygen) will inhibit embrittlement by
hydrogen. 1t ig anticipated that water vapor will also have an

inhibiting effect upon embrittlement,
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In areas where Rocketdyne's experience indicates that a problem could

exist, components will be protected from the

by providing a barrier that prevents strength
due to that environment. Rocketdyne has demo
gold plating protects the base metal from hyd

embrittlement at hydrogen pressures up to 10,

Electro deposited copper from pyrophosphate b

environmental effects

or ductility degradation
nstrated that copper or
rogen environment

000 psi.

aths can be employed so

that controlled thicknesses can be deposited with a minimum of special

tooling. 1In certain instances, internal anod

to the throwing power limitations of a copper

es will be required due

plating system. It has

been shown that as much as 0.012 inch of pyrophosphate copper can be

deposited into recesses 1/4 inch deep and 1/4

special anodes.

In a few components, highly recessed areas ex
themselves to the use of external anodes. 1In
higher throwing power capability is required,
be employed. Special gold plating baths have
have excellent throwing power (Sel-Rex BDT ba

deposited to a depth of 1 inch in a hole 0.03

inch in diameter without

ist which do not lend

these cases where still '
gold plating also can |
been developed‘which
th). Gold plate has been

0 inch in diameter.
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In general, conventional plating procedures are followed while special
attention is directed to details that result in high-integrity plated
deposits. These include cleaning and strike operations applicable to
the alloy being protected and fixture design dictated by the configur-

ation of the part being plated.

Some concern has recently been generated at the loss in strength and
ductility for Udimet turbine wheel materials when exposed to water saturated
hydrogen, especially at modest temperatures. Tests are currently planned

within NASA to determine the extent of potential difficulty,

From data available to Rocketdyne, it has been concluded that the reported
effect should abate as temperature increases to the level normally
encountered in turbines and that persistance of any loss in strength can

be countered by the use of plating to prevent direct exposure of the Udimet.

Rocketdyne is, and will continue to follow developments in this area.
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PRECEDING pagE BLAMA NOT FILMED

APU OPERATIONAL ANALYSIS

Summarz

The APU has been separated into three functional subsystems: the Propellant
Conditioning System (PCS) the Turbopower Unit (TPU) and the Power Control

as shown in Fig. 6. The functions of each subsystem are summarized below:

1. Propellant Conditioning System: Acquire and condition the propellants
as necessary, to provide gaseous propellants at controlled Pressure
and temperature to the TPU. Provide necessary hydraulic and lubricating

0il cooling,

2. Turbopower Unit: Efficiently convert the potential chemical energy
of the propellants into hydraulic and electrical power to meet the

flight power profile,

3. Power Control: Provide speed control to ensure that the TPU operates
within specified limits under both steady state and transient conditions
during load transmission, Turbine inlet temperature control is
accomplished by the relative sizing and mechanical linkage of the power |
control valve combined with the controlled propellant inlet conditions

to the TPU at the combustor.
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The PCS controls used to condition the propellants are summarized below:

1. The inlet pressure: Controlled by a GH2 regulator located at the
PCS inlet, and a differential pressure regulator which senses GH2

pressure and establishes GO2 pressure at the TPU inlet.

2. TPU inlet temperature: Regulated by a closed loop GH.2 temperature
control utilizing a bypass valve around the regenerator. This control
maintains a constant GH2 temperature at the inlet to the TPU under
varying hydraulic and lube 0il heating loads, as well as GH2 supply
temperature variations. The temperature equalizer passively brings

the GO2 and GH2 inlet temperature within close proximity.

Two types of power control were investigated, a pressure modulated control
and a pulse width modulated control. Each of these power control types
is directly applicable to the above described Propellant Conditioning

System, and is summarized below:

1. Pressure Modulated Power Control: Function is to throttle TPU inlet
pressure to the turbine in order to match turbine power against the
load and thereby maintain instant speed. This is accomplished by a closed
loop speed control in which any deviation from a reference speed is
converted to a driving signal to modulate the valve. The valve itself

is mechanically linked, providing a constant area ratio independent of

valve position,
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Pulse-Width Modulated Power Control: Function is to pulse the TPU
inlet pressure to thé turbine in order to provide turbine power at a
fixed level and varying duration and thereby maintain speed within a
predetermined band. This is accomplished by a closed loop speed
control which signals an "on" pulse, opening the power control valve
when TPU speed reduces to the lower band limit, and signals an "of £"
pulse, closing the valve, when TPU speed increases to the upper band
limit. The valve is mechnaically linked, providing a constant area

ratio during the "on'" pulse.

Steady state and transient operating characteristics of the APU were

investigated utilizing an analog model as the main analytical tool. The

key problems investigated were:

Could the system components function satisfactorily over the required
power and altitude profile, and what was the effect on mixture ratio

and/or specific propellant consumption (SPC).

Could the APU handle varying cooling loads at different power levels

without affecting mixture ratio or SPC,

Could the APU control system provide stable operation over the flight

operational profile.
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4. Could the APU control system handle severe steps in load or propellant

inlet conditions without exceeding a maximum allowable speed deviation

or causing detrimental excursions in turbine inlet temperature.

5. What was the sensitivity of turbine inlet temperature to errors in

various components.

A summary of the APU steady-state operational characteristics as modeled

on the analog computer is presented in Fig. 55. Tolerance bands for the
controlled variables were established and it was shown that at the worst
condition, mixture ratio would change by 3.1% causing an associated

change in turbine inlet temperature of 68 R. These values are well within
the acceptable limits of operation. The steady-state results also show
that the pulse-width modulated system control was able to maintain turbine
inlet temperature at +13R, pressure at +1,2% and mixture ratio at +0.8%
when power output was at 25%. At 100% power, the temperature variation was
1+23R., For the pressure modulated system, the variations were essentially

ZeTro.

Figures 56 and 57 show the analog output in response to a step change in
power. The pressure modulated system (Fig. 56) adjusts within approximately
1 second and the variation in system speed is well within the required +57,
The turbine inlet temperature variation is short and well within acceptable

limits.
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The overtemperature transient of +220R at the turbine inlet when changing
power could be reduced by utilizing a droop type differential pressure
regulator. Such a characteristic was incorporated into the analog program
and it eliminated any overtemperature condition. The pulse modulated
system also accomodates to step power demand within totally acceptable
limits (Fig. 57). It should also be noted that while combustor flowrate
pulses, the propellant flowrate (e.g., 02) modulates with only small
oscillations. This results because accumulators are used downstream of the

pressure equalizer.

A transient condition due to a severe oxidizer supply pressure variation of
200 psi/sec was also investigated. Turbine inlet temperature changed by
15R for the pressure modulated system, and by 60R for pulse-width modulation.

Both excursions are felt to be acceptable.

A closed loop turbine inlet temperature control was incorporated in the
APU with pressure modulated power control. This control loop senses a
deviation in turbine inlet temperature from a '"set'" value and modifies the
differential pressure regulator reference to change TPU GO2 inlet pressure
and thus alter mixture ratio. The effect of this control was to reduce
turbine inlet temperature excursions during the power transients to +65
and ~45R. Startup and shutdown transients have not yet been investigated

on the analog model.
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Hydraulic and lube o0il cooling loads of up to 28.2 hp at 25% TPU power
level and 56.4 hp at 1007 TPU power level were satisfactorily accomodated
over the Flight Operational Envelope. In addition, a nearly constant

sink temperature (+10R) for the hydraulic and lube o0il coolers was
maintained over the operating conditions described above. This was made

possible by the controlled TPU inlet temperature,TH ,» and the fact that
2

only small variation existed in hydrogen temperature drop across the equalizer.

Two types of APU propellant supply systems were simulated: supercritical
storage of hydrogen and oxygen, and a stored gas supply system. The
steady state variations in propellant conditions associated with each
supply system were accomodated by the propellant conditioning system, and
turbine inlet temperature was maintained within an acceptable range of

i6OR.

During constant power operation with fixed propellant supply conditions,

a pressure modulated APU maintains TPU speed at both 25 and 1007 power
level. Also, turbine inlet temperature and other system parameters

remain virtually constant, the only deviation resulting from normal
modulating control action., Under the same operating conditions, the analog
model showed that the APU with a pulse power control would hold the critical
parameters of TPU speed and turbine inlet temperature within an acceptable
band. The deviation in turbine inlet temperature of +23R occurs during an
"on" pulse and is due primarily to the transient variation in relative

pressure of the GH2 and GO2 alternator tanks which are located at the TPU
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S’
inlet. At 1007% power level, a small downward shift in mixture ratio has
been incorporated, by utilizing a differential pressure regulator with
standard "droop' characteristics. The extent of this shift is controllable
by the gain built into the regulator. The steady state regulator
characteristics can be described by the relation
X =K (P, - P_)
R G H2 O2
where XR= Regulator valve position
KG= Regula tor gain
P_= TPU GH, inlet pressure
H, 2
PO = TPU GO2 inlet pressure
2 p—

At increased power level, the valve position, X increases, and, depending

RQ
upon the value of the gain, K., results in an increased deviation in TPU
inlet pressures, causing a downward shift in mixture ratio. This operating

characteristic is desirable in reducing overtemperature excursions during

power transients,

It has been concluded that satisfactory steady state operating characteristics
was demonstrated over the flight operational range by the dynamic analog
of the APU with both a pressure-modulated and pulse-width modulated power

control,
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Operational Analysis Procedure

An operational analysis of the APU system was conducted using an analog
computer to evaluate steady state and dynamic performance. The analysis

procedure is summarized in Fig. 58.

Each of the major components was "mapped" to evaluate such parameters as
flowrate, mixture ratio, pressures, and temperature under steady state
conditions over the power-altitude flight profile. 1In addition the effect
of hydraulic and lubricating oil cooling loads and APU hydrogen and oxygen

inlet conditions was also investigated.

Steady state analysis was performed with the APU control system active

to evaluate the sensitivity of mixture ratio and turbine inlet temperature to
variations in propellant inlet conditions and errors in control components,
During transient studies, the sensitivity of the system to attenuator tank
volumes (for the pulse power control), differential pressure regulator

characteristics (gain and response), and TPU inertia were also investigated.

Conceptual design of the propellant conditioning and power controls was
performed through the use of conventional control synthesis techniques,
however control optimization was not carried out during this phase of

the contract.
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Dynamic performance of the APU was evaluated during simulated operational
conditions, e.g., large step changes in power demand, and variations in
hydraulic and lubricating oil cooling loads and propellant inlet conditions

to the APU.

Detailed characteristics of the APU system components were evaluated at
their reference design condition using the analog computer. For example,

a distributed parameter analysis of the heat exchangers provided an axial
temperature and pressure distribution of the propellants as well as wall-
temperature gradients. Using the same basic heat transfer and momentum
relatives, one and two node lumped-parameter dynamic equations were written
for the heat exchanger and mechanized on the analog model. Similarly for
the turbine, detailed off-design characteristics were computed as a function
of inlet and exit pressure levels, turbine inlet temperature, and speed.
These characteristics were duplicated on dialed function generators for use

with the analog model.

Control valves were sized and simulated based upon compressible flow relations
with an assumed linear area-travel relation. Since no detailed component
designs existed, reasonable response characteristics were assumed. Controllers
were either of the 'Type zero (proportional) or Type I (proportional plus

integral).
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Development of General Fguations

The APU system is divided into nsections" and "nodes" as depicted in Fig. 59.
The circled numbers in Fig. 59 indicate node locations where the cquation
of state and continuity relations are used to calculate propellan* pressure
and temperature, accounting for fluid capacitance effects. The uncircled
numbers represent sections between the nodes where thermodynamic and
momentum relations are employed to calculate heat transfer rates, wall

temperatures,friction losses and fluid inertia effects.

A summary of the general equations used in the model is shown in Fig. 60.
In each model "section," heat transfer relations are calculated as follows

where applicable:

ha, = f (Re;, Pry) hA = product of heat transfer

coefficient and area

(Btu/sec R)
Re = Reynolds number

Pr = Prandl number

q = (hA)i(Tg-T?) ' q = heat flux, (Btu/sec)
Tg = average wall temp. in
i*h section, (°R)
T? = Avg. propellant bulk

temp. in ith Section (°R)
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Momentum relations in each of the model sections are

where applicable,

k
*'?fT E

(CpW)

Cp
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i

product of wall

specific heat and weight
(Btu/°R)

= propellant temperature

change in ith

(°R)

= propellant specific heat,

Section,

(Btu/R-1b)
= mass flowrate through
i th Section (1b/sec)

calculated as follows

- . .th
= pressure drop in i

Section, (psi)
= Length of Section, (in)
= acceleration of gravity
(1b/in°)
= total friction factor

= ?/"2

2 g
= friction drag, a function

of Re
= contraction, expansion
and turning loss.

= propellant density (lb/inB)

propellant velocity
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At the "node" locations the following continuity relations apply:

dp_ . _3¥RT
dt ]

(él + ﬁz - ﬁB) P = pressure at the node,(psia)
\' = pratio of specific heat of
the propellant
R = propellant gas constant,
(in/°R)

. ] V = volume occupied by propellant
CpTymy * CpyTomy

Cp3 m3

Tn addition to the above relations, turbine and pump performance maps are
utilized to describe off~design and transient characteristics. System lines,

ducting and valves were sized and incorporated in the analog model as shewn

in Fig. 61.

The model was mechanized on an AD256 Computer utilizing the following equip-
ment:
140 amplifiers
52 multipliers
In addition, three function generators and digital logic equipment was used.
A PDP-8 digital computer is "tied in" to the analog AD256 to perform automatic

set-up and read-out functions.
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Steady State Performance and Component Mapping

The analog model was first used to determine steady state system parameter
variations over a Power-Altitutde flight profile matrix utilizing an APU with
a pressure modulated control. The pulse control was evaluated later during

transient analysis studies.

The bipropellant conditioning system is applicable to both a pressure
modulated and pulse power control, with, at most, some minor differences

in the two systems. While the efficiency of the TPU design is highly
dependent upon the type of power control with regard to selected design
pressure, ratio, power level, tip speed, turbine inlet temperature, etc.,
the operational characteristics are not. A discussion of the TPU design
details and optimization for each of several different system concepts is
presented elsewhere in this report. For use with the analog model, a single
turbine design, optimized for a pulse-power control, was mechanized and used
also with the pressure modulated power control. Because the objective of
the analog model was to evaluate operational characteristics rather than to

make a comparison of SPC, this was considered a reasonable approach,

Utilizing a pressure modulated control, with a supercritical propellant
storage system, the major parameters of the APU were evaluated at 100%
power level and are shown in Figs. 62 and 63 for both zero and a 39.8 Btu/sec

hydraulic/lube oil cooling load. Ambient pressure is 10 psia.
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Figures 64 and 65 show the same system at 257 power level with zero and a

19.9 Btu/sec hydraulic/lube oil working load.

Tu;bine performance over the power altitude flight profile is illustrated
in Fig. 66. There is no degradation in SPC (constant at 2.05 1b/hp-hr) over
the power range at an ambient pressure of 0 psia. At 25% power, SPC is
degraded when the ambient pressure (Pa) exceeds 2.6 psia. At 100% power
level SPC degradation occurs for Pa > 10.1 psia. Compared with the SPC at

O psia ambient pressure, a 26.7% degradation occurs at 25% power and 10 psia
ambient. At Pa=0 psia, a pressure ratio of 51.3 is established across

the turbine by sizing of the exit nozzle. This pressure ratio remains
constant independent of power level as a result of the choked exit nozzle.
At high ambient pressures, turbine pressure ratio drops below the design

level, and results in the SPC degradation,

Turbine exit temperature is constant at 1367 R independent of power level
for Pa=0' When performance is degraded, turbine exit temperature increases,

reaching a maximum of 1567 R at sea level and 257 power level,

Performance of the H2/02 equalizer is illustrated in Fig. 67. Total heat
flux rates are linear with power level at Pa-O psia, reflecting a constant
SPC. The average wall temperature varies slightly ( < 10R) over the power-

altitude flight profile. Hydrogen temperature level is controlled to 500R
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at the APU inlet by the regenerator by-pass control. The H2/O2 equalizer
maintains an oxidizer-hydrogen temperature differential of approximately
+21R between 100% and 25% power level. The hydrogen temperature drop

across the equalizer is very small (a maximum of 39 R at 25% power and Pa= 0

psia) while providing an oxidizer temperature rise of 322 R.

Performance of the regenerator is described in Fig. 68 at 25% power level
with hydraulic and lube oil cooling load varied from O to 40 hp. As the
cooling load increases from zero to 28 hp, the fractional bypass flow

increases from 51% to 81% in order to maintain a controlled 500 R TPU

inlet temperature. Total heat flux in the regenerator reduces from 42 Btu/sec

to 22 Btu/sec as a result of the downstream heat addition, and the mixed Hz
outlet temperature decreases from 540 R to 295 R. The hydrogen discharge
temperature from the regenerator, prior to mixing is increased from 1070 R

to 1350 R due to the severe reduction in throughflow. At zero cooling load
the maximum TPU hydrogen inlet temperature achievable with zero regenerator
bypass flow was 660 R. The heat flux to the equalizer under these conditions
increases (to raise oxidizer temperature from 200 R to 695 R), resulting in

a mixed regenerator outlet temperature of 712 R,

The regenerator design has a strong effect on freezeup in this unit. The
results of the analog simulation study indicated that parallel flow should
be used in the regenerator to ensure wall temperatures high enough to
prevent freezing on the exhaust gas side of the heat exchanger. The wall
temperature shown in Fig. 69 is that corresponding to maximum hydrogen

regenerator flow (minimum bypass and most severe freezing condition) and it

e __.-V,_,‘(
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is well above the condensation limit for the hot exhaust gas. As bypass
flow is increased, the wall temperature rises because of lesser regeneration,
and condensation will always be avoided. The analog results for counterflaw
are shown in Fig, 70 for the 25% power level and at zero and 28 hp cooling/
lube o0il cooling loads, and in Fig. 71 for the 100% power level and at zero
and 56,4 hp cooling/lube o0il cooling loads. In both cases, temperatures
throughout the regenerator increase substantially with increased cooling
load because of reduced throughflow. Due te the nature of the counterflow
design, wall temperature can drop below the condensation limit. This is
unacceptable because it can result in a freezing condition of the exhaust
gas condensate on the tube walls. The use of a counterflow unit, therefore,
requires a preheater located ahead of the regenerator to eliminate the

freezing hazard. Use of a parallel-flow design is evidently to be preferred.

Closed Loop Turbine Inlet Temperature Control. As a result of varying

requirements over the power altitude flight profile, the TPU inlet temperature
of the oxidizer may vary by approximately 40 R. This results in a change

in oxidizer flowrate due to a density variation. To compensate for the

effect on mixture ratio, a closed-loop twin control of the differential
pressure regulator may be used. This is accomplished by sensing turbine

inlet temperature, and comparing the signal to a reference value, Any
existing error is used to trim the differential pressure regulator varying
oxidizer TPU inlet pressure and thereby eliminating the error. Trimming

of the regulator could be mechanized by a variable bleed of the GH2 reference

pressure in order to effect a change in controlled oxidizer TPU inlet pressure,
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Steady-state performance of the TPU utilizing closed-loop turbine inlet
temperature control is illustrated in Fig. 72. The required amount of trim
control, i.e., the H2/O2 differential TPU inlet pressure has to be varied
by 9 psi in order to affect the variation in oxidizer TPU inlet temperature,
and maintain a constant turbine inlet temperature of 2005 R over the flight
opérational envelope. It is important to note here that a continuous closed

loop turbine inlet temperature control is not necessary with this APU system.

The 40 R variation in oxidizer TPU inlet temperature which occurs over the
power profile is not severe. If a mixture ratio correction is required,
however, it could be accomplished by utilizing the droop characteristic

of the differential pressure regulator to lower Hz/o2 differential TPU inlet

pressure as a function of power level.

Effect of Oxidizer Supply Temperature Variation - A nominal APU oxidizer

inlet temperature of 200 R results in a TPU inlet temperature of 522 R,

or 22 R higher than the controlled hydrogen temperature of 500 R. This is

due to the nature of the counterflow equalizer design. When oxidizer inlet
temperature is increased to 500 R, the equalizer heat flux rate is reduced

nearly to zero. This results in a reduction in hydrogen inlet temperature

to the equalizer and a corresponding increase in regenerator by-pass flow,

as illustrated in Fig. 73.
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Sensitivity Analysis

A steady-state sensitivity analysis was performed with the APU control
system active in order to evaluate the sensitivity of mixture ratio

and turbine inlet temperature to variations in propellant inlet conditions
as well as to errors in control components. This analysis was performed

with a pressure modulated power control and the results are shown in Fig. 74.

Differential Pressure Regulator Error. A steady state error in the differential

pressure regulator was simulated on the analog model. The sensitivity of
mixture ratio was approximately 1.0, i.e., a 1.0 percent change in TPU
oxidizer inlet pressure resulted in a 1.0 percent change in mixture ratio.

The resultant turbine inlet temperature sensitivity was 0.8, This sensitivity
of mixture ratio to errors in H2/O2 differential pressure can be substantially
reduced by incorporating choked nozzles just upstream of the combustor
injectors. The effect of these choked nozzles is twofold: first it reduces
the sensitivity of flowrate to pressure deviations because flow is proportional
to TPU inlet pressure rather than a relatively small differential pressure
between the TPU inlet and the combustion chamber; secondly, the nozzles

tend to isolate the oxidizer and hydrogen propellants from one another, which

reduces mixture ratio excursions.

Oxidizer Supply Temperature Variation. A 300 R increase in oxidizer supply

temperature resulted in a 23 R reduction in TPU inlet temperature, and a

corresponding increase in oxidizer flow rate producing a 2.3% mixture ratio

increase and 1.1% increase in turbine inlet temperature. This characteristic
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is quite dependent upon the equalizer design. There is some evidence that
a parallel flow equalizer would result in less sensitivity to APU oxidizer

supply temperature variations.

Regenerator By-Pass Control Error. Simulating a regenerator by-pass control

steady state drift, hydrogen TPU inlet temperature was varied +10%. Oxidizer
inlet temperature varied virtually the same percentage resulting in a
constant mixture ratio. Turbine inlet temperature rose 44 R due to the

increased TPU inlet propellant temperatures.

TPU Throttle Valve Area Deviation., A 5% deviation in the TPU throttle valve

areas was simulated, and resulted in a 5% error in mixture ratio, and a 73 R

variation in turbine inlet temperature as shown in Fig. 74.

Combined Probable Maximum Control Errors. Probable errors were assigned to

each of the control components in a manner which would be additive with
respect to an increase in turbine inlet temperature. This resulted in a

3.17% mixture ratio increase and 69 R increase in turbine inlet temperature.

Dynamic Performance

Stability Characteristics. The varjable displacement hydraulic pump with

its associated control system, maintains a constant hydraulic discharge pressure
(within its "droop characteristic") independent of small speed variations.

When the resistive load is constant, a constant discharge pressure implies
constant hydraulic power independent of small speed variations. This

characterisitic is peculiar to the type of hydraulic pump control used here.
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The torque load in the APU is then a hyperbolic function of speed as shown
in Fig. 75. The delivered turbine torque is approximately linear with a
negative slope in the design region. Under steady state conditions at the
design speed, the torques are matched., Speed excursions around the design
speed will occur., As indicated by Fig. 75, a small increase (decrease) in
TPU speed would result in a continued increase (decrease) in speed due to
the nature of the torque functions. This implies that loss of the closed
loop speed control would result in a severe change in TPU speed, and would

necessitate some emergency control action to prevent damage.

The system is therefore dependent, for stable operation on the speed
control, Should the speed control become inoperative, a resulting overspeed

or underspeed condition would signal an emergency shutdown of the APU.

Preliminary Control System Design., Standard synthesis techniques were

employed to establish preliminary control design characteristics for the

APU system. Control characteristics, as used with a pressure modulated

power control system, are shown in Fig. 76. All three control loops are

a "Type 1" or integrating control which implies a zero steady state error.

The integrating rate of the pressure regulator is 2.5%/sec/psi; the
regenerator bypass valve is 0.25%/sec/R and the power control valve is 0.004%/
sec/rpm, Control characteristics as used with a pulse power control system
are shown in Fig. 77. The regenerator bypass control is unchanged. The
power control is an on-off type operated within a speed band of +4.0%; the
pressure regulator integrating rate is reduced to 0.6%/sec/psi; and the

regenerator bypass valve controller is unchanged.
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Transient Reponse of APU. The transient response of the APU system was

evaluated through use of the analog model. The ability of the system to
accommodate power demand steps, hydraulic and lube oil cooling load changes,
and propellant inlet condition changes was investigated. Two power control

concepts were evaluated: a pressure modulated control, and a pulse control.

PRESSURE MODULATED POWER CONTROL. The pressure modulated power control as
shown in Fig. 76 throttles TPU inlet pressure to the turbine in order to
match turbine power against the load and thereby maintain constant speed.
This is accomplished by a closed loop speed control in which any deviation
from a reference speed is converted to an error signal which passes through

a controller whose output modulates a mechanically lined throttle valve.

Response of the system to a 2% second duration power pulse is demonstrated
in Fig. 78. Power demand was stepped up from 25 percent (56.4 hp) to 100
percent (225.5 hp) and after 2% seconds stepped back down. The entire APU
control system is shown i? Fig. 76. The TPU moment of inertia was 0.0143
1b—ft—sec2 which includes all rotating components of the TPU, referenced

to turbine speed. The differential pressure regulator was set to provide a
nominal turbine inlet temperature of 2005 R at 25% power level. This required
an H2/02 differential pressure setting of -7 psi, due to the deviation in
TPU inlet propellant temperatures, Supercritical storage propellant inlet
conditions to the APU were nominally 396 psia/43.4 R for the hydrogen and
781 psia/200 R for the oxidizer. Following the power step increase, TPU
speed dropped 4.2% and did not completely recover to 60,000 rpm by the end

of the step change. This is due to the short duration of the pulse compared
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to the dynamics of the speed controller and the TPU inertia. The turbine
throttle valve opened from approximately 9 to 487 to accommodate the power
increase. The first order time constant of the system with respect to

power demand is approximately 0.35 seconds, based upon the rise rate of
turbine inlet pressure. Mixture ratio, following the step down to 25%,
increased to a maximum of 1,0, resulting in a turbine inlet temperature

rise of 220 R. The mixture ratio increase results from the relatively slow
response of the differential pressure regulator, which allowed a 40 psi error
in TPU oxidizer inlet pressure. At the high power level, TPU oxidizer inlet
temperature reduces to a steady state level of approximately 475 R. The
transient response of the system as described above is strongly dependent
upon the control system design, Fig. 76. Both the turbine inlet temperature
overshoot and transient speed error which resulted from the power pulse

could probably be improved through optimization of the control design.

The effect of reduced TPU inertia was evaluated and is illustrated in Fig. 79.
A 3 second duration power pulse was imposed on the TPU which had 257 of the
inertia used for Run #134, Fig. 78. The speed error increased from 4.2 to
6.3%. This resulted in more rapid TPU throttle value actuation which, in
turn, caused larger transient differential pressure errors at the TPU inlet.
Hence mixture ratio and turbine inlet temperature errors were increased. As
in the previous run, the transient response can be improved with control

system optimization. However, the speed was able to recover to 60,000 rpm.
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The effect of an increase in TPU inertia is illustrated in Fig. 80. The

addition of a flywheel can be used to reduce both speed and turbine inlet
temperature errors during a power pulse. Doubling the TPU inertia reduced
the speed error to 3.37% and the temperature error to 155 R (compared with

220 R for Run #134).

The addition of various size accumulators in the oxidizer lines at the TPU
inlet was also simulated in an attempt to minimize the oxidizer pressure
spike and hence reduce mixture ratio error during the power transient.
The additional fluid capacitance worsened the system response by extending
the duration of the mixture ratio error following the power step, without

reducing its amplitude,

A closed loop turbine inlet temperature control was simulated to evaluate
operational characteristics during power transients. The control concept,

shown in Fig. 81, incorporated a fixed bias to the differential pressure
regulator with a gain of 0.5 psi oxidizer pressure reduction per degree increase
in turbine inlet temperature. System response to an 8 second duration

power pulse is illustrated in Fig, 82. Peak turbine inlet temperature

excursion during the power step decrease was held to 45 R, compared with

the 220 R temperature excursion shown in Fig. 78.
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Response of the system to a rapid change in hydraulic/lube oil cooling load
(as might occur following a startup) was also demonstrated with the analog
model. A cooling load increase of approximately 6 hp/sec was introduced.
The regenerator bypass valve opened from approximately 51 to 77% to accommodate
the increased heat flux and there was virtually no error in either design

speed, mixture ratio or turbine inlet temperature during the transient,

Response of the system to a simulated APU oxidizer supply pressure increase
of 200 psi/sec resulted in a minor increase of 15 R in turbine inlet
temperature, as the differential pressure regulator closed to maintain TPU

oxidizer inlet pressure nearly constant during the transient,

PULSE POWER CONTROL. The pulse control, as shown in Fig. 77, pulses TPU
inlet pressures to the turbine in order to provide turbine power at a fixed
level and at varying duration, thereby maintaining speed within a pre-
determined band. This is accomplished by a closed loop speed control which
signals an '"on" pulse, opening the power control valve, when TPU speed
reduces below the lower band limit; and signals an "off" pulse, closing the
valve, when TPU speed increases to the upper band limit, Two electronic
capacitors and a flip-flop are used to generate the control "on-off" logic.
The valve is mechanically linked, providing a constant area ratio during

the 'on" pulse. The differential pressure regulator integrating rate
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was set at 0.6%/sec/psi for the pulse power control. An attempt was made

to "match'" the dynamics of the regulator and the size of the hydrogen and
oxidizer accumulators to achieve nearly constant mixture ratio pulses at

both 25 and 100% power level, while also accommodating maximum power step
demands. The regenerator bypass control was the same as used for the pressure
modulated system. A speed band of +4.0% was used for the on-off TPU throttle:
valve actuation., Supercritical storage propellant inlet conditions to the

APU were 396 psia/43.4 R for the hydrogen and 781 psia/200 R for the oxidizet.

TPU inertia was 0.0143 1b-ft-sec2.

Dynamic characteristics of the system under constant power operation is
demonstrated in Fig. 83 (Run #171). The differential pressure regulator was
set to provide 2005 R turbine inlet temperature pulses during the 25%
constant power operation. During a pulse, the turbine inlet temperature
variation was 75 R which resulted primarily from a mixture ratio variation
between 0,82 and 0.87. Matching of the hydrogen and oxidizer accumulator
sizes achieves approximately equal amplitude oscillations of the TPU inlet
propellant pressures so as to minimize the mixture ratio variation. The
dynamics of the pressure regula tor are set to minimize valve oscillations
(8.0% variation during a cycle) and oxidizer flow oscillations in the
equalizer. The spikes in hydrogen and oxidizer TPU flowrate at the start

of an "on" pulse are due to the low initial chamber pressure--use of choking
venturi flow passage in the valve body could be used to prevent these

spikes if they are found to be detrimental,
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Hydrogen flowrate upstream of the TPU as well as gaseous flow in the exhaust
duct pulsed in phase with the TPU throttle valve. The capacitance of the

5 ft long exhaust duct was not large enough to smooth out the flow.

When the system was subjected to changes in the power level from 25 to 100%,
turbine inlet temperature excursions proved to be unacceptable. A modified
regulator design was, therefore, incorporated in the analog model (which
also was modified to simulate a stored gas supply of hydrogen and oxygen).

The regulator is a conventional proportional gain type with a simple lag, i.e.:

K E
*= 14t
where X = Valve position (%)
Ep = H2/O2 pressure error
Kg = Regulator gain = 1.73%/psi
T = Lag time constant = 0.086/sec
S = Laplace transform operator

This regulator can be mechanized with a diaphragm, spring and snubber orifice

to achieve the desired response lag.

The simulated stored gas supply system has nominal hydrogen inlet conditions
of 400 psia regulated pressure at 100 R and oxidizer inlet conditions of

600 psia and 300 R. Accumulators were simulated at the TPU inlet of 4 ft3*
(18 1b) on the hydrogen and 0.25 ft3 on the oxygen side, A 50 millieecond
time lag was assumed for the hydraulic system with respect to power demand

transients on the TPU,

* An accumulator volume of 1.0 ft3 was included in system weight calculations
to provide conditioned gas for in-flight restarts.
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Response of this system to maximum power demand steps is illustrated
in Figure 84. The variation in mixture during a pulse was extremely
small: 0.895 to 0.91 at 25% power and 0.76 to 0.79 at 100% power level,
with the exception of an initial 50 ms small amplitude spike which, as
previously mentioned, can probably be eliminated through valve design.
Turbine inlet temperature variation during an "on" pulse is also very small:
25 R at 25% power and 55 R 100% power level. Chamber pressure variation is
8 psi or 2.3% during a 25% power level, which results in a 230 R decrease
in the nominal turbine inlet temperature. As shown in Fig. 84, the regulator
opens from an average position of 14.0% to 40% when power steps up to the
1007 level. Due to the regulator gain of 1.73% psi, this results in a 15

psi differential pressure shiftin the direction to reduce mixture ratio,

Response of the system to a rapid change in oxidizer supply pressure of

200 psi/sec was evaluated. At 25% power level, a 60 R increase in turbine
inlet temperature accompanied an oxidizer supply pressure increase. This
resulted from closure of the regulator and the associated slight increase
in TPU oxygen inlet pressure. At 100% power level, the condition was
magnified, however, due to the 230 R steady state downward shift in turbine

inlet temperature, no over-temperature condition resulted.

The extent of the downward shift in turbine inlet temperature can be
modified by adjustment of pressure regulator gain and possibly modification
of the equalizer design. The temperature decrease is inversely proportional
to flowrate and results in desirable operational characteristics. The
performance penalty associated with the decrease in turbine inlet temperature

is minimal and represents a small fraction of the operating time.
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In summary, satisfactory APU performance has been achieved with a pulse

power control to the extent investigated on this study.

Hybrid Power Control

The pulse power control system maintains a constant inlet temperature high
pressure ratio condition across the turbine at all power demand levels.
Power demands are matched by control of the pulse width, rather than through
modulation of turbine inlet pressure. This operating characteristic

minimizes specific propellant consumption, but has some disadvantages:

1. A large number of thermal cycles is required by the combustor

and turbine assembly

2. The amplitude and rate of change of alternator frequency may be

objectionable to the vehicle electrical system

3. The reliable life of a high-response, bipropellant turbine on-off

throttle valve must be demonstrated

4, The pulsing nature of hydrogen flow in the propellant conditioning
system and gaseous flow in the exhaust duct may introduce undesirable

vibrations throughout the system.
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The hybrid system was conceived in an attempt to approach the specific
propellant consumption of a pulse system with a minimum number of pulses
or combustor startup. This type of control scheme is illustrated in Fig. 85.
The propellant conditioning system supplies propellant at the controlled
pressure and temperature level to two combustor and valve assemblies on
the TPU. Each combustor supplies a separate set of nozzles on the partial
admission turbine assembly. The low power combustor (sustainer) is

always operative and modulates turbine inlet pressure to accommodate power
demands from its maximum power capability down to the minimum required
power level of the system. The maximum power capability of the sustainer
combustor is sized based on the system power profile. A tradeoff exists
to size the sustainer combustor large enough to minimize startups of the
high power combustor, but small enough to prevent severe throttling
penalties. When power demands exceed the sustainer combustor capability,
the large combustor is fired and, operating on either a pulse or pressure
modulated mode, accommodates the high power demands. To achieve added
reliability, the large combustor would be designed to develop maximum

power without the aid of the sustaining combustor.
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APU STORABLE PROPELLANT STUDY

The objective of this study was to perform a tradeoff analysis to permit

comparison to be made between a hydrogen-oxygen auxiliary propulsion unit

(H2/O2 APU) and an APU which would operate with storable propellants. 1In

the tradeoff study, the following factors were used in the evaluation:

Reliability

Minimum Development Cost
Minimum Development Risk
Minimized Weight
State-of-the-art Materials
Existing Technology

Long Life

The major considerations were

Propellant Selection (monopropellant Vs bipropellant)
Ignition/Dissociation Control

Gas Temperature

Carbon Formation

Freezing Point

Performance

Optimization was done considering

Type of fuel

Peak and part-load performance
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Fuel weight
Dry weight
Tank weight
Safety
Reliability
Life

Development problems

As a result of a comprehensive study, a baseline system was evolved.
Figure 36 shows the results, with numbers applied to the booster. The

selection of this system will be discussed in the following sections.

PROPELLANT SELECTION

The program plan makes the choice of the propellant to be used one of the
program objectives. Both monopropellant and bipropellant storables are to
be considered. Figure 87 lists the considerations, limitations, and design

factors which must be taken into account.

Because one of the fundamental areas of this program was to determine the trade-
off between development cost/risk and performance penalty, the most developed
propellants were considered. The evaluation was based on results of a compre-
hensive study for rockef propulsion previously performed at Rocketdyne. Varicus

propellants were reviewed with respect to performance and applicability.

The group of propellants most developed and applicable to the AFU are
hydrazine and its blends. As shown in Fig. 88 , hydrazine 1s highly developec
and shows a low development risk. However, it freezes at 3L.8F and will not

be usable to -65F as required unless special provisions are made. The
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freezing point car be depressed to the desired level by the addition of
water. This however lowers performance considerably. Performance can be
raised (maintaining low freezing point) by using one of the ternary mixtures
(hydrazine, hydrazine nitrate, water) or by using a mixture with MMH. The
MMH mixtures (e.g., MHF-3), contain carbon which results in the probability
that fouling will occur in the turbine passages due to carbon in the gases
(Table 4 ). It is, of course, possible to consider making a special
propellant mixture, tailored to this application. This would provide the
required characteristics but would result in an increased development

risk.

Hydrazine can also be used as a fuel in & bipropellant system. This does
not overcome the freezing point limitation nor does it simplify the system.
A survey of other possible bipropellant combinations reveals that none (save
hydrogen and oxygen) appear to offer any significant advantages considering

the added complexity of two feed systems.

Monopropellants other than the hydrazine blends were also considered. The
most likely candidates are hydrogen peroxide and ETO. Both are well
developed and present low development risk. However, hydrogen peroxide also
requires provision to depress the freezing point to the desired level and
has considerably lower performance than hydrazine. ETO has poor performénce
and its vapor pressure at 180 F is approximately 150 psia which would

require heavy tankage.

Propellant selection was, therefore, made from among the hydrazine blends

and hydrazine. Figure 89 compares the operation and performance of some
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representative propellants. One of the major considerations in a turbine
system is the gas temperature. To maintain stress levels at an acceptable
level, the gas temperature should be limited to approximately 1700 F.It is
readily observed that the hydrazine blends (except MHF-5) result in higher
temperature even at 100 percent ammonia dissociation. The low-temperature
blend MGGP-1 has relatively poor performance. As shown in the figure,

the performance of MHF-5 is only slightly better than that of pure hydrazine

at 1700F.

Based on these considerations pure hydrazine was selected to be the propellant
used in the study. While it will result in a small (10-15%) performance
penalty and must be heated externally to prevent freezing under extreme
conditions, it is by far the most developed and best understood of the
applicable propellants. It has been used and flight tested and is currently
under intensive study for the grand-tour mission (Ref. & ). Furthermore,

any conclusions drawn using hydrazine will be valid with (at most) small
changes for the hydrazine blends. For purposes of this short-term study,

the availability of data and experience information appears to outweigh

other considerations in the selection.

SYSTEM SELECTION

In selecting the system best suited to the APU application, various types of

propellant feed, combustion ignition, and control were considered. Conditions

for TPU operation were considered to be the same as for the hydrogen/oxygen APU;

Ref. a. Holcomb, L. B,: Satellite Auxiliary-Propulsion Selection Techniques,
Jet Propulsion Laboratory, Technical Report 32-1505, November 1, 1970.
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the power profile, [light profile, and power conditioning were taken to be
P P

identical. For turbine operation a peak gas temperature of 1700F (which

is higher than the 1550F selected for the Hp/Op APU) and a tip speed of

1580 ft/sec (which is comparably lower than the 1700 ft/sec for the H2/02

APU) were selected.

The options considered were

Feed System - Pump Fed

Pressurized Tank Fed

Ignition System - Catalytic
Thermal
Hypergolic
Control System - Pressure Modulated

Pulse-Width Modulated

Of the possible combinations, four systems were selected for detailed study

These were:
System El1
E2
E3
El

Pump Fed/Thermal Ignited/Pressure Modulated
Pump Fed/Thermal Ignited/Pulse-Width Modulated
Pressure-Tank Fed/Thermal Ignited/Pressure Modulated

Pressure-Tank Fed/Thermal Ignited/Pulse-Width Modulated

As a result of the tradeoff study discussed below, System El was selected as

the baseline system. The system selection and the baseline system schematic

are shown in Fig. 90.
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Feed System

Propellant feed us.ing either a pump or a pressurized tank was investigated.
Pressurized-tank feed is positive and is & proven concept. It has,

however, two drawbacks: for multiple start applications the expulsion system
must be capable of multiple cycles, and for high feed pressure (desirable

for performance) the tank weights become prohibitive. The pump system
requires development of a pump to accomplish the particular task of this
application and, tc maintain the required suction characteristics, a low
pressure feed tank continues to be required. Also, the pump can be expected

to be relatively low in efficiency, imposing a performance penalty.

The tank weight required is based on data in Ref. b . Figure 91 summarizes
these weight criteria. For the booster, approximately 15 cu ft of tank
volume is required; it is evident that the pressurized system tank weight

is apprecieble.

For design purposes the pressure drop between the tank and the combustion

chamber has been taken equal to that used in the Hp/0, APU:

1.39 p + 20

ptank chamber

The factor includes anticipated pressure losses in the valves, injector, and
a cavitating venturi which isolates the supply system from the combustion

chamber. A 20 psi line loss is also included.

Ref. b, Space Engine Desipgn Handbook, Rocketdyne, a division of NAR,
Report No.R-8000 P-1, 1 January 1969
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Tank material can be either titanium or aluminum, both of which are compatible
with hydrazine. For pressurized tanks the titanium tanks are lighter at

pressures above about 150 psi.

For the pump-fed system a modest 20 psi will be required to maintain the
pump in cavitation-free operation. A minimum wall thickness tank will be
required, making aluminum lighter. It might be noted that this minimum
wall tank will be capable of containing up to 100 psia. At this pressure
level the start systerm shown in Fig. 90 will not be needed, flow can be

established directly from the tank during startup.

The propellant tanks (high or low pressure) will require positive expulsion.
Three methods have been considered, bladders, bellows, screen tension
devices (Fig. 92 ). The most demonstrated technology is bladder systems
which have been flight tested. Cycle life has been demonstrated using
rubber (Ethylene-Propylene Terpolymer, 37 cycles to complete expulsion
after 30 day's exposure) and extended storage has been performed (L63 days
at 125F). Because of rubber permeability to helium gas (0.17 mg/in2/hr),
some method of gas/liquid separation during long-term exposure will be
required. A form of screen tension device appears to be desirable.

Bellows can be used if the tank volume is limited. To date,bellows have
only been used successfully for tanks up to 3 cu ft volume. It is possible
that 5 cu ft could be utilized. This would be sufficient for the orbiter
but would require multiple tankage for the booster vehicle. The major
advantage of the bellows is positive separation of the gas and liquid.

Cycle life has been demonstrated in the limited size.
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Much work has been done in recent years on positive expulsion using screen-
tension devices. These are particularly useful in a weightless environment.
It is probable that some development effort would be required prior to use

of screen-tension expulsion.

For the baseline system a rubber bladder has been selected.

The pump-fed system appears to be more suitable for the multiple start
requirement of the APU. Although no developed pump is available, a pump
recently tested at Rocketdyne appears to be ideal for this application.
Because the large weight penalty associated with the pressurized tankage in
the pressure-fed system is not a factor, the pump-fed system can be

operated at high combustion pressure. The pump head at a pressure of 1000
psi is 3200 ft which can be achieved by operating the Rocketdyne Mk 36

pump at 81,000 rpm (Fig.gp). This extrapolation is based on well documented
test data at 75,000 rpm. The pump curve is extremely flat in the expected

operating range indicating good flow control as power changes occur.

For the baseline system, pump feed has been selected.

Tgnition System

The generation of gas when monopropellants are used requires the decomposition
of the propellant. Unlike bipropellant systems where the injector design

is critical, for monopropellants decomposition control is essential.

For hydrazine systems the decomposition of the hydrazine results in the

formation of ammonia which then further decomposes into nydrogen and nitrogen

a-3
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at a relatively slow rate. This dissociation is endothermic and results in
cooling of the gases with a simultaneous decrease in the molecular weight

(m) of the gas over part of the dissociation range. Between O and 75

percent ammonia dissociation the parameter T/W varies only * 3 percent.

For 100 percent dissociation this parameter is reduced by 10 percent. As
pointed out previously, for the APU application, a temperature of 1700F,
corresponding to 60 percent ammonia dissociation, is desirable. Because

this dissociation is relatively slow, provision must be made to enhance it.
Adiabatic ammonia dissociation to 29 percent (2100 F) is reported to occur

in 35 milliseconds. To ensure reasonable temperature, a long combustion
chamber is required, Fortunately, dissociation of ammonia can be speeded
catalytically in the presence of many metals. Pulsing rocket engines have
been operated at Rocketdyne with 55 to 60 percent dissociation at flowrates
comparable to those required by the APU. In such tests, screens (e.g. nickel,
stainless steel) were utilized to achieve the dissociation. The screen catalyst
is relatively fmmune to poisoning by exposure to air so that it is useable in

a restart application.

To initiate the gas generation process the hydrazine must be decomposed.

The most conventional method is to use a catalyst, although the application
of heat as in a thermal bed has also been used successfully. Table 5 lists
three methods of ignition and decomposition control considered together with

the evaluation factors.

While catalytic ignition and decomposition is the most developed, tests have
shown that the catalyst will poison in the presence of water vapor or oxygen

especially if the eatalyst is hot. If the APU will be required to restart
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within the atmosphere, then this type of poisoning becomes a major considera-
tion and provision for excluding air from the gas generator upon shutdown
would be required. This would normally be a purge system which would have
to operate until the bed had cooled to an acceptable level. The weight
penalty to be assessed to such a purge system depends on the number of shut-
downs required per mission and the ground equipment available if GSE purge
is provided. It is evident that more than one or two purge cycles will

result in a major weight penalty.

The use of a thermal bed to achieve decomposition is also relatively well
developed. Initial response is, of course, delayed until the external heat
source has increased bed temperature to the required level. Once decomposi-
tion is achieved, the reaction is self-sustaining. There is a small power

penalty for the heat source.

Hypergolic initiation of dissociation involves the use of bipropellant
operation for short times until the thermal bed reaches self-sustaining
temperature. If pulse width modulation is used, this type of operation may
require a bipropellant mode for about 5 percent of each pulsing cycle for
the first 6 seconds. This system is independent of external power for heat
but requires the inclusion of an oxidizer supply system with associated

controls,

For the baseline system an externally heated thermal bed was selected.
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Control System

Two methods of power control were considered for the storable-propellant APU -
pulse width control and pressure-modulated control. The considerations
pertaining to these are essentially similar to those for the Hp/Op APU

except that it is possible to consider higher pressure levels because tankage
volume is lower. For purposes of system eveluation, the peak gas generator
pressure was limited to 1000 psi. This is somewhat arbitrary and higher
pressures could result in lighter-weight systems. The major advantage in
using high pressure is that performance degradation due to varying back
pressure is minimized, and the pressure change effects due to larger power

variation is minimized,
For the baseline system, pressure-modulated control was selected.

SYSTEM OPTIMIZATION

The selection of the system design conditions was based on a weight optimiza-
tion for both the booster and orbiter power/flight profile. The results

obtained for the booster are shown in Fig. 93 .

Pressure Modulated System

For the pressure modulated system, the required pressure to produce the
required power at the exhaust pressure varies over the given flight profile
was calculated. Varying design pressures were assumed and off-design
penalties as they apply to supersonic turbines were assessed. The propellant
usage was calculated and a 5% reserve plus the fequired tank weight were

added to determine weight. The result is a series of curves shown in Fig.93.
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which form an envelope as shown. When the system is pump fed, tank weight
is low because a minimum wall tank is all that is required. An increase

in the maximum allowable pressure 1s desirable and 1000 psi was selected

for system E1 (pump fed/ thermal ignition/pressure modulated). For the
pressure-fed system, the tankage weight varies with the supply pressure. The

supply pressure was assumed to be

pg ~ 1.39 P.. + 20

which provides for the pressure drop in the injector, the flow control, and
the lines (just as in the H?/O2 system)., Tank weights were calculated
using the data of Fig. 91 as described in the Feed System section. The
result (Fig. 93) shows a definite minimum in the weight (usage + reserve *
tank) when the design pressure is 300 psi and the maximum pressure is LOO

psi (System E3, pressure fed/thermal ignition/pressure modulated).

Pulse-Width Modulated System

When pulse width modulation is used, the design pressure and peak pressure
are essentially the same because the pressure is either maximum or zero.

(They are not precisely the same because provision is made to obtain peak
power when the pulse is on 96 percent of the time, giving a L percent reserve.
The design pressure has been defined as that required to obtain full power

at constant flow.) The two curves related to pulse-width modulated operation
are also shown in Fig. 93. Again the best operation for pump feed is the

maximum useable (1000 psi) and a minimum exists for pressure feed at 350 psi ,



TMRO115-3137
Fege201

Calculations similar to those plotted in Fig. 95 were made for the orbiter profile.

The results are summarized in Table 6 for both vehicles.

TABLE 6
Design and Peak Pressures
BOOSTER f ORBITER
. 3§ )
System (PT)max (IT) { (PT)max (PT) ‘
1

El 1000 500 | 1000 300

E2 1000 960 | 1000 960 |
i 4 z
E3 1,00 3 300 250 g 200
El 350 L 338 } 200 190

Figure 94 summarizes the total system weight and specific propellant

consumption for the four systems and for the booster and orbiter application.

System El was selected for the baseline system (even though weight is not

minimum) because the pumped-propellant-fed system is considered to be easier

to control when pressure modulation is used.

SYSTEM COMPONENTS

Turbopower Unit

Design considerations for the turbopower unit are essentially the same for

the storable system as for the H2/O2 APU, Because design gas temperature is

higher (1700F), the turbine tip speed has been reduced to 1580 ft/sec.

Maintaining the same turbine speed results in a tip diameter of £.CLO in.
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The turbine design concept is shown in Fig.95 . Two wheels provide pressure
staging with the first stage partial admission (72 degrees) and the second

stage full admission. As shown in Fig. 95, burst protection is included.

Hydraulic=-0il Cooler

One disadvantage in the use of the storable system compared to the H2/O2

system is the hydraulic-oil cooler. Because it is not possible to utilize
the propellant to remove the heat generated in the hydraulic circuit
(hydrazine has poor heat capacity and becomes flammable at temperatures
above about LOOF), an auxiliary system must be provided. It was decided to
utilize the latent heat capacity of a liquid to absorb this energy. Of the
various candidate materials water has by far the highest latent heat per
pound and was, therefore, selected. Figure 96 shows the concept. A valve
is set to blow steam off at 20 psi above the ambient. This maintairs low
<> P across the tank and minimizes weight. Boiling temperature is set by
this pressure independeﬁt of power demand. The hydraulic fluid and lube oil
flow through a matrix of tubes located at the bottom of the tank. They are
sized to maintain hydraulic-oil temperature at 300 F or below. A total of
85 ft of 3/8-inch-diameter tubing is required. The matrix is sized to minimize
pressure drop. Provision is made to maintain sufficient water (20 pounds)
in'the tank at the end of a mission to ensure that tubes are covered. If it
becomes necessary to use this technique in a zero-g enviromment, some form
of sc?een—tension device will be required to maintain the liquid mass on the

tubes,
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Haterials

Hvdrazine has been shown to be compatible with a wide variety of materials
{vr this type of application. Table 7 summarizes compatibility with the

more prominent candidate materials for an APU.
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Controls

The controls for the storable propellant APU are essentially similar to
those used on the H2/02.APU except that no propellant conditioning is
required and, with a monopropellant, gas generator control is different.

Table 8 1lists the control tradeoffs considered together with the selections

for the baseline system.
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All required technology for the turbopower unit has been developed.

Demonstration in the selected size range is required.

Controls similar to those which will be required have been demonstrated
and fully developed in rocket technology. Unique requirements of de-

composition maintenance and multiple ignition has been demonstrated.
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TECHNOLOGY STATUS

In order to determine the useability of storable propellants for the APU
the status of the various applicable portions of the technology were reviewed.

Figure 18 shows the resultant assessment for various options considered.

The propellant selected (hydrazine) has been used in a number of flight systems
and has been tested as a propellant in the size and power range required here.

It is considered to be well developed.

The pumping system will require adaptation of an existing (Mark 36) design with
subsequent confirmation testing. The technology has been demonstrated

on other, similar systems.

For ignition, thermal bed heating is selected. This type of system has been
developed for thrustors and has proven to be reliable. It requires adaptation

and final development in the proper size.

Combustion systems similar to those required for this application have been

developed. Sufficient L* for decomposition control needs to be demonstrated.

Development of an appropriate hydraulic oil cooler will be required. The
design is established and all necessary technology has been identified as

being available.

Availability of materials compatible with hydrazine service is established.
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Each of the systems evaluated in thls atudy was subjected to a preliminary
analysis to determine the relative reliability. A separate set of calcula-
tions was made for the HQ/O? and storable propellant systems. Relative
fallure rates were ectimated and nominal and maxirum expectead system

reliabilities were determined using established NASA failure data.

CRYOGENIC SYSTEM

System Analysis

The candidate systems were studied in detail to determine the “ype of
component best suited for the intended application. Ground rules and
assumptions essential to (and made prior to) the analysis are listed in

Table 9.

As an example of the analysis, the type of servo system required for the
regulation of propellants through the hot-gas heat exchanger was determined.
It proved to be essential to ascertain whether a mechanical or electronic
type of system was required for the application. The unreliabilities of

the two systems are significantly different.

A system matrix identifying the type and quantity of components required
for each of the candidate systems was constructed as shown in TublelQ.
Component relative unreliabilities were for incorporation into the system

reliability models and system reliabilities and unreliabilities were

vy ) Y trrenonan e apawe

PRECEDING PAGE BLARMK [OT FILMED
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TABLE 9

GROUND RULES FOR RELIABILITY ANALYSIS

Hydraulic pressure feedback to motor (hydraulic) servo valve will not require
electronic gear for detection, amplification, etc., but is a direct
hydraulic pressure control mechanism.

Heat exchanger bypass valves are considered for this analysis to be elec-
tronic servos (torque motor, solenoid, etc.) with electronic feedback from a
thermocouple temp pickup requiring amplification, etc.

0il and hydraulic cooler controls are considered for this analysis to be
simple thermostat devices requiring no electronic equipment.

The bipropellant valve (whether modulating or pulsing) will require electronic
equipment to translate the speed reading to an electrical output to the valve.
The combustor throttling assembly will also utilize a similar feedback
electronic control assembly.

All system valving (purge control, venting, etc.) are assumed to be remotely
operated solenoid valves even though the system schematic does not indicate
electrical actuation. The only exceptions to this assumption are the fill
and vent valves utilized on the propellant tanks when the tankage is provided
with the APU. In flight purge is a requirement.

Oxidizer regulator performance requirement for the high pressure system is
assumed to be *+ 1% whereas the low pressure system required * O 2%.

Bipropellant valve actuation for the high pressure systems will be pneumatic
whereas the low pressure system will utilize hydraulic pressure.

Because they are not shown on the schematic, the following were not considered
in the reliability analysis:

a) Hydraulic system components such as reservoirs, accumulators and
system valving.

b) 28 volt power supply with the proper support electronics (apart
from the electronic control loops) for heater consumption, valve
power, etc.

¢) Lubricating oil supply equipment.

The pressure controlling device in the propellant tank is a mechanical device
rather than a resistance bridge type transducer which sends a signal to the
controller, etc.

All temperature instrumentation will be thermocouples with individual failure
rates but the failure rates will not be included in the controller failure
rate.
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calculated and compared. Results of the system comparisons were analyzed,

conclusions drawn and recommendations for improvement were compiled.

Determination of Relative Unreliabilities

Two basic methods were utilized to jointly arrive at relative component
unreliabilities. One method was a search of available failure data on
similar components. Three sources of failure data were utilized as listed
in the reference section as Reference a), b) and c¢). The second method was
a systematic scheme of deriving a relative unreliability ranking which
considered four attributes: a) performance, b) stress, ¢) state-of~the-art,

and d) complexity.

Generic Data Search - Three sources of data were found to contain unreliability

or failure rate data which could be utilized in this trade study:
Reference a) is a compilation of failure rates which NASA has
compiled in its experience with rocket engines up to 1965. The
data are applicable due to the cryogenic component application of

the reported data.

Reference b) is a summary of failure data compiled from Rocketdyne
records on the J-2 and F-1 programs. Failure rates from only stage
static testing (after engine delivery and installation into the

vehicle stage) were considered in the report.

Reference c) is data from an independent organization which compiled
all available failure rate data from aerospace contractors. Direct
application of the data is limited due to a lack of usage description

and necessity for application of various influence factors.



Reliability Estimate - In obtaining the estimate of component reljative

unreliability a system was devised 1o incorporate the influence ~f charac-
teristics such as a) relative tightness »f the performance reqgulrement,

b) relative degree of severity of stresses, c) relative degree of previous
usage or advancement of state-of ~the-art, and d) relative complexity.

Kach component was analyzed relative to tne ground rules delineated in

Table 9 and given a rating from 1 to 5 as described. The product of the
four factors was obtained to arrive at the predicted relative unreliabilities

which are listed for each component in Table 10Q.

Tests for Rationality

In order to validate the predicted relative unreliabilities (failure rates),
generic data were compared with the estimates, and components were compared
with components. With these two cross checks the unreliability estima‘es

vere reviewed and revised as dictated by the analysis.,

The results of this analysis are summarized below:

1. The relative system failure rates were determined and are

summarized in Table 171,
2 The most significant influences on relative system failure rates

are provided by three areas listed below in order of importance.

Pressure System Elements., The low Pressure subsystem is best

because it has the fewest valves.



T™RO115-3137

Page 220

6966°
1L66°
8IG6*
T).66°
866*
8906°
8966°
1266°

L666°
£966°
£o66°
9966°
€o66°
9966°
6Ge6*
T966°
9666°
0G66°
9666°
RG66°

WO XY

ALITIGVITEE

QLLE®
¢6L6°
hLl6*
G616°
GlLLG®
hll6®
GLLE®
€6.6°

9€.L6*
gEL6”
9616°*
ohl6*
eL6”

8L%"
welb®
6g96°
20L6°
1896°

0
o
~
(o))
*

AITTIEYI T

(WON) QATIIINE

G*QO0T 09 i hol. X X X X
0°00T 0 1 HOL X X X X
2°0TT 2L L 9Ll X X X X
0°00T 0 T 0., X X X X
L°60T Q9 - 2l X X X X
2°01T 2L L 9lLlL X X X X
L*60T ]9 9 elLl X X X X
1°T0T Q € A X X X X
eoghl ort LT HHhoT X X X X
0*62t 02 €1 806 X X X X
g*Let 96T 4 006 X X X X
€°6TT 9tT 0T ong X X X X
L9et 88T TT 268 X X X X
2°gTT Q2T 6 23S X X X X
0°)61 TOh oz GOTT X X X X
G*HET ghe 71 Lné X X X X
g esT 6L€ 61 €80T X X X X
€o6hT 61¢E 9T €LoT XX X X
L° 26T TLE gt Glot X X X X
AR LB TiE ST GT0T X X X X
> b BEE s BEEE
% % NEEEE8x8
8 B==BEBY B E
5 BEEEER ¢
XII e o
ANV A ﬁmﬁqmésv o m g

SRTITITa VT IaNN AATLYIAY NAVSS
11 4Vl

*DISAd
HALSAS



TMRO115-3137
Page 221

The pressurized subsystem (supercritical) has more valves and is

significantly less desirable than the low pressure system.

The pumped system is least desirable primarily because of the necessity for

a hydraulic motor-driven hydrogen pump.

A high-pressure gas system, while not included in the analysis, would be

rated similar to the low-pressure gas system,

Turbine Combustor Propellant Control. The pulse-modulated system utilizes

a single bipropellant valve which introduces propellants to the combustor
at controlled average flow rates and provides positive shutoff for system

nonoperating periods.

Modulating valve and variable geometry injection may require additional

positive shutoff valves, which can increase the system unreliability.

The variable geometry injection concept appears the least reliable because

of system complexity and development risk.

Tankage - Vehicle propellant tanks (e.g., those to be used for the ACS)
are better than separate APU tanks because they can be used with essentially
no reliability penalty for the vehicle and eliminate the need for APU tanks

and associated fill, drain, and relief conttrols.
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The major reliability problem areas identified by this study are:

Complex Control Systems - Controls systems, especially those requiring

transducer-electronic control-electrohydraulic control loops contribute
substantially to the system unreliability. Both hardware complexity and

critical performance requirements are influential factors.

Components - Individual components which have the highest relative

failure rates, thus incluencing the reliability of the system in which

they are used are:

Hydrogen pump and hydraulic motor

Modulating bypass valves and high precision pressure regulators

Reliability improvement can be made in the following areas:

Alternate control systems with less complexity or wider performance

tolerance ranges.
Improved valve and regulator or pump technology.

In-system redundancy.
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STORABLE SYSTEMS

This section presents the results of a reliability study of eight conceptual
storable propellant systems. The objectives of the study were to compare the
storable propellant systems tc previcusly evaluated oxygen/hydrogen systems

as well as to compare the eight concepts. In addition, a brief maintainabilitv
study was conducted to identify any unique storable propellant system problems

1

or costs which should be considered in the comparison of the storable and cryo-

genic systems,

Reliability Trade Study Method

Figure 97 1is a matrix of the major system differences and designations. The
eight storable systems considered were various combinations of :

1. Pump fed or blowdown system concepts

2. Pulsing or modulating main propellant valve

3. Catalytic or thermal combustion devices

In order to compare the eight candidate systems a complete components list was
created for each system (many components common), and relative unreliabilities
were listed for each component. By simply summing the component unreliabilities,
the system unreliabilities were obtained. Tablel2 is the list of components,

the system usage, the component unreliability and the resultant system unrelia-
bility. Ranking of the systems by the relative unreliabilities can be accom-

plished for comparison only, but cannot be used on an absolute basis.

Relative unreliabilities were estimated and tested for rationality in the same

mannexr as previously described for cryogenic systems. Ground rules used were:
L. Fill valve and purge valve unreliability was included only when the
manual valve was required to provide a positive seal in the closed

position. If the manual valve is open during the whole mission and
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(RIS I <SR SRR S I 45 I S5 N S0 Y O ® ] O &
Ji
High Pressure Helium Tank - 4500 psi KX 3] 50 ,OOOH
Low Pressure Helium Tank - 1700 psi XOR X 2} 507 .0001
Helium Fill Manual Valve (Unregulated) A XX XXX YX 81 30 -
Helium Supply Solenoid Valve (Unreg.) AR X XN XX 22
Helium Regulator - 4500 to 300 psi XX X X] 86001 .3 i
Helium Regulator - 1000 to 500 psi XX XX 3616001 .3
Helium Supply Check valve N XX XXX XX 21 30| .1
Helium Relief Valve A XXX XX KX Q
Helium Vent Valve (Low Press) Manual XX XXXXZIX 4
Hydrazine Tank (Screen) XX XXXX 43 (100} .001
Hydrazine Manual Valve (Resupply) ¥ XX XX XKX 4
Hydrazine Solenoid Valve 22X X223 X]131100] .01
Heating Blanket XXX XX XN X 1o
Temp Sensing and Control Device I XX XXX XX 2
Main Propellant Valve - Modulating L X X X 63
Main Propellant Valve - Pulsing LX X K] o34
Speed Pickup X XXX XXKxX 2
Prop Control Electronic Assembly AX XXX XXX gO
Catalytic Combustion Device xxxx18k] - 100
Thermal Ded Combustion Device & Temp Control XX XX
Latching Solenoid Valve (Hydrazine) 22 X221 K}251(200] .1
Turbine Assembly X XXX XX x| 24,
Turbine Exhaust Gate Valve O G A O
Gear Box XXX XXXXNXX]20
Combustor and Injector HXNXNXKAXXXi16e(300f 50
lydrazine Pump (Low Pressure Tank) { X XX 90
Upstream Purge Solenoid Valve (Latching) X X X X 25
Pump Oytlet Supply Solenoid (Latching) X X X 25
SYSTEM UNRELIABILITY TOTALS T NN NO O o
O NN TSSO
EATITANEN EN Ve BEVC R T NNV

TABLE 12
COMPONENT/SYSTEM DESIGNATIONS
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only closed during ground operations, its unreliability was not
included in that the only failure mode would be external leakage

such as lines and fittings.

2. Lines and fittings unreliability was not included.

3. Redundant regulators or redundant components were exclused because
no redundancy was included in the cryogenic system study.

4. The purge gas system component unreliabilities were not included,
consistent with the cryogenic study ground rule. Only the purge
control valve unreliability is included.

5. Filter unreliabilities were excluded.

6. No hydraulic pump or alternator unreliability is included in the
tabulations.

7. No pressure or temperature transducer unreliability is considered in

the summation unless it is an integral part of the control servo loop.

Subsystem Comparison

Tablel3 is an analysis of the basic subsystems within overall systems. 1In
other words, eliminating common components, the blowdown system advantage over
the pump-fed system was quantified. Also the table shows the quantified advan-

tage of the pulsing propellant valve over the modulating propellant valve.

Comparison With Cryogenic Systems

Comparison of the catalytic and thermal combustion systems shows very small
differences. Some recent publications have indicated, however, that failure
rates of catalyst beds are considerably higher than implied by the numbers used
in the present study. Under such conditions the thermal bed would be strongly

favored.



TABLE 13

SUBSYSTEM CCOMPARISON

BLOWDOWN_SYSTEM AND PUMPED 5YSTEM

a)
b)
c)
d)
e)
f)
8)

a)
b)
c)
d)

One
One

One

Low
Low

Pump

Latching Solenoid

Solenoid Valve

Hydrazine Start Tank

Helium Fill Valve {Manual)
Hydrazine Fill Valve

Start System Supply Solenoid

Pressure Helium Tank (Not High)
Pressure Single Stage Reg.

Lower Press. Manual Valve
Lower Press. Solenoid Valve

Net Diff. + 166

Blowdown Advantage over Pump Fed System

MODULATING PROP. VALVE AND PULSING PROP.

a)

For Catalyst System (Advantage of Pulse Valve)
1) Valve Difference
2) Detrimental to Catalyst

o+ o+ b+ 4+

+

41

166

VALVE

Net Diff.

Pulse Advantage over Modulating + 2

b)

For Thermal Bed Combustor
1) Valve Difference

2) Detrimental to Thermal Bed

Pulse Advantage over Modulating + 29

+

+

29
27

2

29
29
0
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Quantitative comparisons of the storable propellant system unreliabilities with
cryogenic system unreliabilities are. shown in Table 14. The two systems (cryo-
genic and storable) can be compared in this fashion because consistent ground

rules and rating procedures were used.

TABLE 14

STORABLE VS CRYOGENIC RELATIVE
UNRELIABILITY COMPARISON

Cryogenic Range 704 to 1105

Storable Range 508 to 602

The apparent advantage of the storable systems is due to several factors:
1. Pump power is taken off the gear box compared to separate drive

for cryogenic system

Amount
a) No hydraulic motor + 90
b) WNo hydraulic servo + 8

+ 98
2. Blowdown system is for single propellant for storable and dual
propellant for cryogenic system.

3. Cryogenic regulators and servo valves contributed significant

unreliability.

A significant factor in the consideration of a storable system is the require-
ment for maintenance to achieve a high "in flight" reliability. As the number
of flights is increased, reliability is significantly degraded on all hydrazine
components requiring close tolerances, tight clearances, and sliding fits due
to detrimental effects of propellant residuals. Hydrazine in extended use
leaves a residue which can reduce valve response times or in the extreme
prevent valve movement. Achieving high reliability levels therefore is
dependent on frequent maintenance with its attendant costs, and this aspect is

discussed next.
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Maintainability
The maintainability characteristics of the monopropellant systems were com-
pared on a preliminary basis. Both scheduled maintenance (checkout, servic-
ing, etc.) and unscheduled maintenance (corrective: replace, repair, etc.)

were considered.

The monopropellant systems are expected to require significantly fewer
unscheduled maintenance actions than cryogenic systems because the failure
rate is less. This advantage is partially offset by increased average time
for corrective action on the propellant subsystem caused by the potentially
hazardous nature of residual propellants. The monopropellant advantage is
amplified by a reduced spares inventory, especially of costly complex

devices (regulators, etc.).

Scheduled maintenance is more expensive for the monopropellant systems.
Because no other space shuttle subsystem would require hydrazine, certain
unique non-recurring expenses must be attributed to a monopropellant APU.

These include:

1. Facilities. APU-unique hydrazine loading and safing facilities
and GSE would be required. It is assumed that for the most part,
these are not now in the NASA inventory.

2. Support requirements would be mor extensive and costly in the
areas of training, handbooks, and personnel skill levels because
of the APU-unique propellants.

3. Safety requirements for hydrazine, while within state-of-the-art

capabilities, are complex and inconvenient.
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As a minimum, inspection (boroscope or direct visual) of the catalyst
would be required each mission duty cycle. Replacement prior to com-
pletion of 100 starts (the NASA goal for the Space Shuttle) is ex-

pected, with replacement every flight possible.

Another possible contributor to high scheduled maintenance cost may be the

necessity for extensive post-flight decontamination of propellant system com-

ponents.

Residual hydrazine can cause operational problems with controls

components which incorporate close-tolerance fits between moving parts.

The hydrazine systems employed in current commercial aircraft APUs are for

emergency operation only; they are not normally used. Aircraft APUs are gen-

erally gas turbine devices utilizing aircraft ﬁropellants.

Conclusions

1.

Thermal -bed systems appear to have a reliability advantage over the
cryogenic systems if they are not degraded by residual propellant.
Catalytic decomposition appears to present the greatest reliability
risk because of the uncertainty of the catalyst bed reliability,
especially for restart.

Blowdown systems are more reliable than pump-fed systems.

The pulsing valve offers no clear reliability advantage over the
modulating valve. The pulsing valve would degrade the catalyst;
effect on the thermal bed would be less detrimental. The modulating
valve must incorporate close tolerance dynamic fits; this is potenti-

ally susceptible to degradation from residual propellant.
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5. Maintenance costs for the storable propellant systems will be sig-

nificantly higher than for the cryogenic systems. The primary cost

penalties are

Special facilities and equipment required for the storable
propellants

More extensive post flisht decontamination that may be required

2

for components subject to malfunction caused vy residual propellants

Higher cost of corrective maintenance per action on the propellant
subsystem, necessitated by safety precautions.
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CONTROL SYSTEM RELTABILITY COMPARISON
This section presents the results of a reliability analysis of two candidate
propellant control systems:

1. Pulsing bipropellant valve to introduce oxygen and hydrogen to the
turbine combustor along with an associated turbine speed feedback
control loop

2. Modulating bipropellant valve and control loop.

The earlier reliability study for the purpose of system comparison considered
onlv relative failure rate., It concluded that there was little difference be-
tween a modulating and pulsing system, and that difference was with the valves.
This study explored the severity of effect as well as probability of failure and

reevaluated the failure rates based on better definition of component conceptual

design and APU mission duty cycle.

A failure mode and effect analysis was conducted to:
1. identify the predominant component failure modes
2. determine the effect of each failure on APU operation
3. categorize the criticality of the effect
4. apportion the estimated failure rates among the criticality categories

to evaluate the relative probabilities of more severe failure modes.

Functional Analysis

In order to fully define the component functions in the entire control loop,
functional block diagrams were created. Figure 98 is the functional diagram
for the pulsing system and Figure 99 . is the diagram for the modulating control

system.

Although the valve designs are in the concept stage, some basic assumptions

were made as to their configurations:
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1. The valves would be a singly actuated bipropellant valve rather
than two separate valves electrically linked.

2. The main flow control devices would be mechanically linked to
provide positive mixture ratio control.

3. The pulsing valve would be a torque motcy actuated flapper type
valve similar to the RS-14 bipropellant valve.

4. The modulating valve would be a torque motor mechanically linked
valve, flow resistance being inversely proportional to applied
voltage. The valve would be spring-loaded closed. Flow control could
be by pintles, spools, balls or cylinders, or gates,

Consideration was given to a modulating system which employed a two-stage
valve that remained in a fixed position until commanded to translate. This

system concept was rejected without detailed study because:

1. The valve and electronic control assembly (ECA) failure rates would
be higher than for the other systems.

2. A predominance of failure modes would result in more critical failure
effects.

A safety cutoff subsystem is necessary for both the modulating and pulsing
subsystems in order to prevent turbine overspeed failure from continuing to
turbine destruction. The safety cutoff subsystem must have the capability of
shutting down the APU in the event of a permanent or transient condition allow-
ing turbine overspeed or of a gearbox failure. The gearbox output transducer
(perhaps the alternator) and associated ECA must be independent of the primary
APU controls and should have the capability for manual reset to allow reuse of
the APU in the event a transient condition was responsible for the overspeed
cutoff. The overspeed cutoff circuit must also close the propellant supply
solenoid valves in the event a valve open failure is responsible for the
overspeed. Thus, the overspeed cutoff was considered as being part of the system
rather than just a recommendation and the result was a lessening of the severity

of the criticality of some of the failure modes,
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This study also pointed out the need for determining the redundancy and
failure detection/compensation equipment necessary to prevent catastrophic

failures and/or significantly reduce system probability of failure.

Failure Mode and Effects Analysis

Each operating component in the control loop shown in Figs. 98 and 99was
analyzed and the Failure Mode and Effects Analysis included the following:
1. Component functional description
2. Failure modes including typical causes for the failure mode
and conditions in the system giving the appearance of the
failure mode
3. Failure rate apportionment - (described below)

4, Criticality rating (Table 15)

5. Effect of the component failure mode upon the operation of the
APU for each operational phase

6. Provisions for detecting the failure mode and methods for
compensating or overriding the effects of the failure mode, as
applicable.

The principal output of the Failure Mode and Effects Analysis is
summarized in Tables 16 and 17 . Table 15 shows a summary reliability
comparison based on the breakdown presented in Tables 16 and 17. Four

levels of criticality are defined:

I. Loss with Hazard. Permanent disablement of APU with hazard to
vehicle or crew.

II. Loss. Permanent disablement of APU, no hazard, including shut-
down and failure to start or restart.

ITI. Shutdown. APU shutdown safety, but can be restarted (shutdown
by overspeed overspeed protection subsystem).

IV. Performance. APU steady state or dynamic performance is
outside specified limits, with total mission requirements not
met in the extreme case.
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CRITICALITY OF
FAILURE

RELATIVE PROBABILITY OF
FPATIARE (FAIIlHHCl{ﬂTE)

Pulsing

Modulating

I.

II.

I1I.

Loss with Hazard . Permanent
disablement of APU with hazard
to vehicle or crew.

Loss. Permancnt disablement
of APU, no hazard, including
shutdown and f{ailure to
start or restart.

Shutdown. APU shutdown safety,
but can bc restarted
(shutdown by overspeed

overspeed protection subsystem) .

Performance. APU steady state
or dynemic performance is
outside specified limits, with
total mission requirements not
met in the extreme casc.

3.8

16.6

wt
.
i_J

178.5

2.8

10.2

700

141.0

TOTAL

20k

161
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COMPONENT

CRITICALITY OF FAILURE

Failure Mode SHUTDOWN PERFORMANCE
1.0SS
Transducer, Turbine Speed
1. Sum of All Modes 2.0

Transducer - TOTAL

W

YOEBIN NI

Electronic Control Assembly (ECA)

1. Fail to Provide Power

1.0

2. Power Level Low 3.0 2.5

3. Throttle Transition Shift~-Low 2.0 2.0

Y. Throttle Transition Shift-High| 2.0 1.5

5. Non-Linear Response 2.0 2.0

6. Hysteresis 2.0 2.0

7. Control Voltage Shift-High 9.0 1.0 8.0

8. Control Voltage Shift-Low |_9.0 9.0

s lII// IIII//

ECA - TOTAL 239:9 Y 1ok 5077
Valve, Modulating

1. Hard Over-Full Open 1.0 1.0

2, Hard Over-Full Closed 3.0

3. Inaccurate Position Control 40.0 2.0 38.0

4. Slow Opening 14.0 14.0

5. Slow Closing 8.0 1.0 7.0

6. External Leakage 6.0 15.0

7. Flow Restriction 2.0 . 1.9
valve - ToTaL ' RAY RN, AFEIN,
Ignition System

1. Fail to Spark

2. Fail to Terminate Spark 0.1

3. Low Power h,2

Ve

Ignition - TOTAL 0.7 4.3 7
Combustor

1. Improper Mixing 11.5

2. External Leakage or Rupture 1.

3. Extinguishment of Combustion

Combustor - TOTAL

70333 72

Turbine

1. Low Efficiency

2. Fails to Start

3., Structural Failure
L. External Lesaksge

Turbine - TOTAL

////2‘/
Z/411/1 /

MODULATING SYSTEM - TOTAL

7%

141.0
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CRITICALITY OF FAILURE
COMPONENT FAILURE [T ==
MODE PERFORMANCE
RATING HAZARD LOoss
Transducer, Turbine Speed
l. Sum of all Modes 2.0 2.0
/ riev iy id fﬁ]// /
- O I
Transducer - TOTAL Y, A 8% Z
Electronic Control Assembly (ECA)
1. Fail to Provide Power 1.0 1.0
2. Power Level Low 3.0 0.5 2.5
3. Switch Locked Off 1.0 1.0
4. Switch Locked On 1.0 1.0
5. Drift in Output-Low 15.0 15.0
6. Drift in Output-High 15.0 1.0 14.0
/II'/I// FV V/// / I/I/// /III}I/
BCA - TOTAL O NN 25420 . 385 7
Valve, Pulsing
1. Fail to Open 3.0 3.0
2. Opens Slowly 2.0 2.0
3. Fail to Close 1.0 1.0
k. Closes Slowly 3.0 0.1 2.9
5. Internal Leakage 45.0 0.2 1.8 43.0
6. External Leakage 16.0 0.1 0.9 15.0
7. Flow Restriction .0 0.1 1.9
,II,,//F7’77]///T’III,7 ’77’7/ fﬁl,%
Valve - TOTAL RO 4037 5:8Y 11 7 648 7
Ignition System
1. No Ignition 1.8 1.8
2. Fail to Terminate Spark 0.2 0.2
3. Low Power 52.0 1.0 5.0 46.0
i/ 7///// / £S5 77 / 4 IIIII//
tgnssion - om0 s, 5 7 e %
Combustor
1. Improper Mixing 12.0 0.5 11.5
2. External Leskage or Rupture 4.0 0.5 3.5
77272772721 77777, / IR EEDS
: [30.0 0 29777300 50 7
Combustor - TOTAL 1000 Y00 Y5l
Turbine 1
1. Low Efficiency 1.8 0.5 17.5
2. Falls to Start 1.5 1.5
3. Structural Failure 0.5 0.5
L. External Leakage k.0 0. 3.5
VSR L] ///////////// 2 ISR
Turbine - TOTAL A LS50 B9
PULSING SYSTEM - TOTAL 20k4.0 3.8 [16.6 5.1 178.5
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The failure modes for each of the operating components in the control loop
were identified and a value rating was assigned, as shown in the first
column in Table . This rating was then apportioned among the four
levels of criticality. From this it is possible to assign a relative
probability of system failure for each of the levels, (total) as shown in
Table . This was done for both the pulsing and the modulating systems
to permit an overall comparison to be made, As shown iIn Table 15 the
modulating system was adjudged superior to the pulsing system based on a

comparison of the relative failure rates for the four criticalities.

The relative failure rates used for each component (valve, ECA, trans-
ducer, etc) are compatible with those of the original trade study. As a
result of this analysis, however, some of the rates were adjusted prior
to making the final summation. Failure ratios which were changed from

the previous study are listed below accompanied with the reason for change.

1. PULSING SYSTEM ECA - The pulsing system ECA was increased to 36
while holding the modulating system to the previous 30 because
of difficulty in maintaining constant DC reference voltages in
transient conditions associated with the constant pulsing system.

2. IGNITION SYSTEM - The modulating system ignition device was re-
duced to a relative rate of 5 while holding the pulsing ignition
at 54. The difference was believed necessary due to the 1000:1
ratio of operating pulses (pulse system to moedulating system).
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Conclusions

It was concluded that the pressure modulating system is somewhat more
reliable than the pulse modulating systen. The dffference is not

sufficient to warrant choosing the pressure modul: ting system. Other

factors such as system weight, cost, etc. must be considered simultaneously
and they may easily outweigh the reliability diffgrence. Also influencing
the comparison made here is the status of the design., Neither control

system has yet been defined in detail at the compénent level, Significant
variations in reliability are possible due to component choices and redundancy.
No redundancy was assumed in the present analysis. An example of application
of redundancy would be use of two ignition systems. This adds little weight
and cost but would eliminate about one fourth of the relative unreliability
of the pulsed system while hardly affecting the pressure modulated systems.
The net result of this redundancy would be to make the two systems nearly

equal in relative unreliability,

In summary, the final choice between the pulse and pressure modulated systems
must be based on more refined estimates of reliability as well as on system

factors such as system weight, operational characteristics, ete,

SYSTEM RELIABILITY CONSIDERATIONS

The reliability of alternative subsystems and systems was discussed above.

This section considers system aspects,
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1f the relative unreliabilities for the systems are converted to estimated
reliability, the results are somewhat below the desired level. This should
not be surprising because no efforts have het been made to optimizg the com-
ponents or systems from a reliability standpoint. Further reliability analysis

is planned for Phase I1I.

One of the first steps to be taken will be to extend the Failure Mode and
Effects Analysis to cover the rest of the APU system, (Only the control sub-
system has been done éo far.) Results of this will highlight component areas
where design and development effort might fruitfully be applied to improve

specific components.

Application of redundancy in some areas will prove to be desirable, Detained
study of means of sensing failures will aid in avoiding potentially catastrophic
results. Sensing can also be used in some instances to detect incipient failures

during ground checkout, thereby allowing repairs to be made,

In summary, it appears that an adequate reliability level over the design
life of the APU can be attained. Effort in Phase II will be directed toward

finding and assessing means of improving reliability.
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APPENDIX A
PRELIMINARY ANALYSIS-PHASE IA

In the Phase IA study, the primary candidate systems were synthesized on

the basis of preliminary system and component evaluations. Various
component oriented combinations were evaluated for each of the three major
subsystems, i.e., Propellant Feed, Turbo Power Unit and Power Controls.

The Propellant Feed Subsystem includes the necessary tankage and pressuriz-
ing or pumping equipment as well as the propellant conditioning subsystem.
The subsystems were chosen and combined into various system combinations

as shown in Fig. Al to allow comparative evaluation for selection of the
"best" combination of components and subsystems. The propellant systems
chosen are representative of the wide range of vehicle influenced propellant

supplies which may be available.

The evaluation is intended to include a full assessment of the penalty
associated with selection of a particular propellant supply. For example,
if a vehicle subcritical hydrogen supply is evaluated (as in Systems A-1, 2,
3, 4, 5), the portion of the large propellant tank used (SSE tankage) is

charged to the system.

SYSTEMS

Three primary system types were evaluated:
System A - Pumped LHZ*
System B - Pressurized Supercritical Ho%
System C - Low Pressure Gaseous H2/O2

3% In all cases, the OP tankage was taken as pressurized-supercritical.
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The mission profile used for the preliminary study is shown in Fig. A2.
The power flow for the corresponding peak, mode and idle conditions are
shown in Fig. A3. A simplified road mep identifying the various aspects
of the most promising candidate systems is shown in Fig. Al. Following
selection of these systems from the 21 systems evaluated (Fig. Al) the
remainder of Phase I effort is devoted to selecting the best subsystems

comprising a single system.

System Results

Figures A5, A6 and A7 present some key system optimization results obtained.
Optimum supply pressure (Pp) and pressure rations (Pp/Pe) can be selected
for System A and B for various combinations including pressure modulation
and pulse power control for two-stage supersonic velocity compound and four-
stage subsonic pressure compounded TPU's. The results are represcntative

of data generated through use of a direct access digital computer system
optimization program. This program utilizes the various component performance
and weight characteristics generated under the component screening portion
of Phase I, along with the Statement-of-work (SOW) mission profile as per
Fig. A2. The program was constructed in a flexible manner so that input
changes can easily be implemented, i.e. mission profile modifications,
vehicle application changes, orbiter tankage conditions as compared to
booster, or component characteristics such as off design turbine performance.

Figure A7 illustrates the low pressure gas system optimization.
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For this analysis, all the gaseous propellant used plus 5% reserve was

assumed chargesble to the APU system.

Figures A8 and A9 illustrate the propellant portion of the system weights

associated with the various systems.

Figure A10 shows how System A and B are weight optimized for various power
control and turbine types. System A, the hydrogen pump fed system, tends
to optimize at medium to high turbine inlet pressures while System B, the
hydrogen Supercritical storage system, optimized at the lowest pressure
consistent with keeping the hydrogen stored supercritically. It should

be noted that the entire weight penalty associated with supercritical
storage for the booster vehicle is included in this 0ptimization*._ Cptimi-
zation with various possible booster tenks was conducted, but the integration
with possible RCS tanks was used for illustration in Fig.Al0. TFigure A1l
compares system A, B and C for typical tankasge configuration, end Fig.Al2
shows specific propellant consumption for some representative systems at

the most important mission conditions.

The sensitivity of the systems to changes in total energy requirements
associated with possible mission profile changes was evaluated and is
illustrated in Fig. Al3 and All.. Booster conditions were improved on the
optimization. For orbiter profiles, the tankage would tend to be heavier

on a specific weight basis due to the longer storage requirements.

* Tankage Support Structures (mounting brackets, etc.) were not included
due to their dependence on concurrent vehicle studies in progress.
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System Evaluation

The purpose of preliminery system evaluation was tO provide & uuntitative
basis for selection of the most promising components, subsystems, and
systems. A survey was conducted of the various criteria and technigques
currently in use on the various Space Shuttle vehicle, engine and auxiliery
system studies. On the basis of the survey and discussion held with the
NASA program monitor, a rating technique was devised, as illustrated in
Fig.Al5, Al6 and Al7. The weighting as shown in Fig.Al5 relates zll items
to cost and reliability. There are indications that in later work, all

items including reliability can be put on a cost basis.

A strong emphasis (20%) was placed on flexibility. In referring to Fig. Al7
it should be noted that items such as mission profile, power levels, turn
down ratios, requirements for Orbiter/Booster commonality and propellant
sources are all quite elastic at this stage of the overall Space Shuttle
Vehlcle Studies. For this reason, it is highly desirable to select APU
designs which are "flexible" in their ability to accommodate to these
vehicle/mission imposed changes. Figure R6 illustrates the ranges and
technique used to quantity ratings for weight and reliability based on the
spread in quantitative results described previously in the system synthesis
work. Manufacturing cost was done in a similar manner. FigureAl7 illustrates
the multiple ballot technique used to quantify the three quelitative rating
items, flexibility, development risk, and maintainability. Three systems

oriented engineers, closely associated with the APU project, were given
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ballots similar to the "typical" ballot of Fig.Al7 and were asked to
rate each system on each item. The results of these ballots were then
tabulated, inspected for significant deviations end averaged to obtain

the necessary quantitative ratings.

The ratings for each system are summarized in Fig. A18, A19 and A20. Data
is also presented for the actual system optimized weight and for the design

conditions, i.e. turbine inlet pressure (Pp) end pressure ratio (Pr)-

Fig. A21 summerizes the ratings for each of the systems for convenient

comparisons and presents the optimum weight as well.

The system evaluation was conducted in & manner to allow certain key
comparisons to be made on a consistent basis. Fig. A22 shows which of
these comparisons have been carried out to date. The results of these

comparisons and some key conclusions are shown in Figs. A23 through A27.

PROPELLANT FEED SYSTEM

The propellant and feed system design considerations included in the study
have been:

TANKAGE

SUBSYSTEM SEPARATE APU TANKAGE VS  INTEGRATED TANKAGE

El) SINGLE APU | (1) ssE
2) MULTIPLE APU (2) Rcs
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LOW PRESSURE VS SUPERCRITICAL STORAGE
ORBITER VS BOOSTER INSULATION
PUMP/COMPRESSOR PUMP TYPE: POSITIVE DISPL. VS DYNAMIC

SUBSYSTEM CONTROL TYPE: N = COST. W/BYPASS
N = VARIABLE, INTERMITTENT FLOW

PROPELLANT HIGH PRESSURE VS LOW PRESSURE HEAT EXCHANGER
CONDITIONING
THERMAL DYNAMICS

CONDITIONING CONTROL

Certain of the key factors entering into the component design are summarized

in Fig.A28.

Tankage

Fig. A29 and A30 illustrate some of the results of the tankage study.

These results represent the welght of tankage associated with a particular
quantity of propellant typical of a booster mission (Fig.A29) and orbiter
mission (Fig.A30). Data has been generated for tankage weight as a function
of propellent weight and same of this data is presented in Fig.A31 for both
booster and orbiter. In Fig.A31l the effect of utilizing different propellant
supply tankage is illustrated. The results are expressed in pounds of
chargeable tankage weight per APU. Tankage for various conditions such as
one tank for each APU(;;S)’ one tank for four AFU (EE%U) and main vehicle

tankage for each APU (SSE-H,, RCS-0,) is illustrated.
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Fig. A32 shows the Rocketdyne generated specific tankage data compared
with certain predictions presently being used in the Space Shuttle vehicle

studies.

Compressor Augmentation

The application of a compressor was investigated to boost the pressure of
propellant gas from the low pressure tankage source, where ullage gas may

be available. Fig. A33 indicates that for low AP the shaft power requirement
1s acceptable if saturated gas in the range of 4OCR is available. For super-
heated gas at higher temperatures, however, the ﬁower required becomes
excessive, particularly at higher AP. At this time, accurate estimates of

the expected inlet gas temperature from the low pressure tankage are not

available.

Fig.. A3L illustrates the difference in requirements for compressors
operating at 43°R and 232°R and compares these compressors with a pump
slzed to perform a similar job. It appears then that, while inlet gas
temperatures may be expected to be somewhere between 4YOOR and 230°R if low
A P is acceptable, compressors may offer a viable solution to the use of

low pressure ullage gas from main propellant tankage.

Pumping Systems

A study is in progress to select the most promising hydrogen pump system
for use in high combustor pressure systems. Fig. 435 i1llustrates four

of the most promising systems under evaluation. Fig. A36 summarizes the
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SHAFT POWER - HP

TMRO115-3137

COMPRESSOR POWER REQUIREMENTS Page ALO

SHAFT POWER

T = 500 R

50 - 200 R

o @ 1 & 8b 100 150 1bo
COMPRESSOR AP - PSIA

FIGURE A33
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PUMP COMPRESSOR DELIVERY COMPARISON

PUMP FEED
(SATURATED LIQUID)

SATURATED

COMPRESSOR FEED
(SATURATED VAPOR)

SATURATED

LiQuio

(7) SATURATED

LiQuio

(5~ TWO-PHASE
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COMPRESSOR FEED
(SUPERHEATED VAPOR)

(1) SUPERMEATED

LIQuID
oRIVE [J-X 7 pume ¢ HEAT FLOW Ox VAPOR
EXCHANGER SATURATED COMPRESSOR
WAPOR
:iﬁlmm ORIVE I\ /¢ onpresson HEAT
WEAT EXCHANGER
EXCHANGER
W =W e 0,07 LB/SEC (PEAK POWER)
M, " Y0,
SATURATED .LIQUTD SUFPLY SUPERHFATED GAS SUPPLY
.PARAMETFR ——— —
FIRAP COMPRESSOR COMPRESSOR
/, 9
T
INLET TEMPERATIRE, R Lo ,h3 / 232 A
DISCHARGFE TFMPERATUR®, R hs - 130 500
INL"T PREGSHURSE, FSIA 25 Lo Lo
DISCHARGE PRESSURE, PSIA 400 400 400
SPEATFTY AT 0.h 0.4 0.k
SPERD, REM 3340 l¥e's%e] 5720
OVERALL 7, % 70 70 70
ADIABATIC HEAD, FEET 10,900 109,000 565,000
SHAFT POWER, HP 2.0 20 10h
PUMP/COMPRFSSOR
WEIGHT, POUNDS 10 0 200
DRIVE WEIGHT#*#, POUNDS ' 1 n g2
TOTAL, POUNDS //1/1//// 7// {éé////// 252
PO
’ 77, 1/ (7. 2
* HYDRAULIC MOTOR
PUMP _COMPRESSOR_

' @ POSITIVE DISPLACEMENT

@ 1LOW WEIGHT/POWER

@ PROPELLANT ACQUISITION .
@ CRITICAL CONSIDERATION

@ MEDIUM DEVELOPMENT RISK

FIGURE

® rCSITIVE DISPLACEMENT

@ HIGH WEIGHT/POWER

@ RFMOTE TANKAGE/APU MOUNTED
@ COMPRESSOR FEASIBLE
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investigation presently in progress, to select a pump for the "best" of
the various pumping systems of Fig.A35. At present, no selection has
been made since characterization of the various most promising pumps is
in progress. Application of the Mark 36 centrifugal punp in single or a
two-si:a.ge configuration is being investigated. Figure A37 shows some

experimental results of the Mark 36 compared with the APU requirements.

Propellant Conditioning Heat Exchanger

A design study was undertaken to determine the requirements for
conditioning the hydrogen using the TPU exhaust gas, The study indicated
that steady state heat exchanger requirements are not expected to be
severe and the next aspect of the study will be concerned with transient

conditions including startup and shutdown,

Propellant Feed System Line and Valve Losses

Representative line and valve loss conditions are shown in Fig. A38 for
the two most sensitive systems B and C. Weights quoted in the Systems

section were based on components and lines sized for these pressure drops.

TURBINE POWER UNIT
Turbine DesiE

Information was genersted for families of turbines in order to provide
component performance and weight information for the system optimization
program. Design point and off design data were generated for each of system

design points shown in Figures A5, A6 and A7. Figures A39 through A42
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illustrate some of the data available from the study. Each of the figures

describe a turbine where an evaluation has been conducted to establish
that a "real" turbine is being represented. For example, stress margins
have been evaluated and blade heights, admission arc and flow angles
revised from optimum with appropriate performance penslties where required.
In a like manner, realistic tip clearances were utilized and performance

penalties included.

Combustor Assembly

The primary effort involved a comparison between high pressure (System

A and B) and low pressure (System C) combustor assemblies. The result of
these studies 1s summarized in Fig. A43. A digital dynamic model was con-
structed for both combustors and as seen in Fig.A44 andA45 both combustors
appear to lend themselves to acceptable pulse power control operation. The
problem of combustion stability for pressure modulation power control was
investigated and is summarized in Fig.A46, While the high pressure combustor
should be acceptable in both control modes, the low pressure combustor is
seen to be acceptable for pulse mode control though marginal with pressure

modulation control. Turbine nozzle area control appears unacceptable.

High and Low Pressure TPU Camparison

Fig. A47 1llustrates the high and low pressure TPU assemblies for comperison
purposes and Fig.A48 shows two typical linked bipropellant valves for com-
parative purposes. The turbine assembly is seen to be comparable for high
and low pressure while the low pressure combustor assembly represents the

major size and weight difference between assemblies.
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